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Motivation

® Minimizing the sum of squares of the difference between each data point and the
center cannot guarantee that the learned decision boundary is a standard

hypersphere.

® |n high-dimensional space the normal data enclosed by a hypersphere are all far
away from the center with high probability (soap-bubble). It means that there is
no normal data around the center of the hypersphere; whereas anomalous data

can still fall into the region.

® The distribution of normal data in the hypersphere is extremely sparse because
of the high dimensionality and limited training data. A high sparsity increases the
risk of detecting anomalous data as normal.

Orthogonal

Projection

-

Figure: Toy example of decision boundaries
with and without the orthogonal projection
layer. Blue circle: assumed decision bound-
ary; black ellipse: actual decision boundary;
purple points: normal data; red points: ab-
normal data.

Figure: ~ Soap-bubble phenomenon
showed by the histogram of distances
from the center of 10* samples drawn
from A(0, Ig).



Deep Orthogonal Hypersphere Compression for
Anomaly Detection

e |llustration of the proposed Deep Orthogonal Hypersphere
Contraction (DOHSC) and Deep Orthogonal Bi-Hypersphere
Compression (DO2HSC) methods.
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Figure: Architecture of the proposed models (right top: DOHSC; right bottom: DO2HSC).
Herein, 2-D visualizations show the trends of training data when applying two optimiza-
tions and 3-D visualizations illustrate the detection results obtained by them, respec-

tively.
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Hypersphere based Anomaly Detection

We first construct an auto-encoder and utilize the latent representation
Z = f°(X) to initialize a decision region’s center ¢ according to Deep
SVDD, i.e, ¢ = 1377, f&1°(x;). Then the objective function is formu-
lated as:
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where the regularization is to reduce over-fitting.

* The inconsistency between the hypersphere assumption and the
actual solution stems from the following two points: 1) the learned
features have different variances and 2) the learned features are
correlated.

e Towards handling these problems, we add the orthogonal projec-
tion layer for DOHSC and DO2HSC to pursue orthogonal features
of latent representation.



Practical Solution of DOHSC

¢ Objective Function:

min *Z 12 — &l + Z W7, (2)

WeW

where & = %2,21 Z; will be fixed until optimization is completed, z is
the learned orthogonal representation.

e After the training stage, the decision boundary 7 will be fixed
based on the 1 — v percentile of the training data distance dis-
tribution:

F=argminP(D<r)>v (3)
r
where D := {d;}V, follows a sampled distribution P, and d; = ||Z; — €||.

* Accordingly, the anomalous score of i-th instance is defined as
follows:

sj=df — 72, (4)
where s = (4, S,. .., Sp).



Practical Solution of DO2HSC

¢ To achieve the contraction target of the bi-hypersphere, the
pretraining stage (i.e., performing DOHSC first) is neces-
sary to determine its decision boundary (fmin and fmax)-

fmax =argminP(D<r)>v, rmin=agmnP(D<r)>1-v.
r r

()

® Then the objective function becomes:
min BZ (max{d}, fmax} — min{dj, fmin}) + Z W[, (8)
i=1 WeW

¢ Accordingly, the anomalous score of i-th instance is defined
as follows:

Si = (di — fmax) - (di = min), (7)

where s = (51, S2, ..., Sn)-



Numerical Results

Table: Average AUCs (%) in one-class anomaly Table: Average F1-scores on tab-

detection on CIFAR-10. ular datasets. _

Allo Thyroid Arrhythmia

el B e e e oo Tom oo st o0

OOGAN 75.7 531 640 620 723 620 723 575 820 554 Deep SVDD | 0.73 +0.00 | 0.54 £ 0.01

DROCG* 82.1 648 692 644 728 665 686 675 793 60.6 LOF 0.54 £0.01 | 0.51 +0.01
HRN-L2 806 482 649 574 733 610 741 555 799 716

HRN 773 665 606 644 Tis 64 174 oo 625 779 GOAD 0.75+0.01 | 0.52+0.02

PLAD 825 808 688 652 716 712 764 735 806 805 DROCC 0.78 +0.03 | 0.69 + 0.02
803 810 704 680 721 724 831 741 833 B

DOHSC ©0) (00) (1.9) (18 (0.0) (21) (00 (0.4 (07 (0.7) PLAD 0.77 £0.01 | 0.71 4 0.02

DO2HSC 81.3 827 713 712 729 728 830 755 844 820 DOHSC 0.92 + 0.01 0.70 + 0.03

02 (03 (04) (13) (1) (02) (06) (0.4) (05 (0.9 DO2HSC 0.98 + 0.59 | 0.74 + 0.02

Table: Average AUCs for graph-level anomaly detection algorithms.

T COLLAB ] VUTAG T ER_VD
0 1 2 0 1 0 1
SP+OCSVM 0.5910 -+ 0.0000 | 0.8397 + 0.0000 | 0.7902 + 0.0000 | 0.5917 - 0.0000 | 0.2608 + 0.0000 | 0.4092 + 0.0000 | 0.3824 -+ 0.0000
WL+OCSVM 05122 40,0000 | 08054 0.0000 | 0.7996 + 0.0000 | 0.6509 =0.0000 | 0.2960 +0.0000 | 0.4571 £ 0.0000 | 0.3262 = 0.0000
NH+OCSVM 0.5976 +0.0000 | 0.8054 +0.0000 | 0.6414 +0.0000 | 0.7959 +0.0274 | 01679 +0.0062 | 05155+ 0.0200 | 0.3648 & 0.0000
RW:OCSVM - - - 0.8698 = 0.0000 | 0.1504 4 0.0000 | 0.4820 £ 0.0000 | 0.3484 = 0.0000
OGGIN 0.4217 40,0606 | 07565 0.2035 | 0.1906 + 0.0857 | 0.8491 = 0.0424 | 0.7466 + 0.0168 | 0.5645 £ 0.0323 | 0.4358 & 0.0538
infoGraph+DSVDD | 0.5662 + 0.0597 | 0.7926 = 0.0986 | 04062 +0.0978 | 0.8805 + 0.0448 | 0.6166 +0.2052 | 053124 0.1545 | 0.5082 + 0.0704
GLocalkD 0.4638 £ 0.0003 | 04330 + 0.0016 | 0.4792 + 0.0004 | 0.3952 & 0.2258 | 0.2965+0.2641 | 05781 £ 01790 | 0.7154 = 0.0000
0CGTL 0.6504 +0.0433 | 0.8908 + 0.0239 | 0.4029 + 0.0541 | 0.6570 = 0.0210 | 0.7579 +0.2212 | 0.2755 + 0.0317 | 0.6915 = 0.0207
DOHSC 0.9185 +0.0455 | 0.9755 +0.0030 | 0.8826 + 0.0250 | 0.8822 = 0.0432 | 0.8115+0.0279 | 0.6620 + 0.0308 | 0.5184 +0.0793

DO2HSC 0.9390 + 0.0025 | 0.9836 + 0.0115 | 0.8835 + 0.0118 | 0.9089 + 0.0609 | 0.8250 + 0.0790 | 0.6867 -+ 0.0226 | 0.7351 + 0.0159




Visualization Results
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(a) DOHSC (b) DO2HSC
Figure: Anomaly detection comparison between DOHSC and DO2HSC on MUTAG.



