

Democratizing Fine-grained Visual

Recognition with Large Language Models

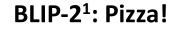
Mingxuan Liu¹, Subhankar Roy⁴, Wenjing Li^{3,6*}

Zhun Zhong^{3,5*}, Nicu Sebe¹, Elisa Ricci^{1,2}

¹University of Trento ²Fondazione Bruno Kessler ³Hefei University of Technology ⁴University of Aberdeen ⁵University of Nottingham ⁶University of Leeds

To recognize a common object, we now can ...

What is the name of the main object in this photo?



LENS³: Pizza!

GT: Pizza

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In Arxiv, 2023
Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Arxiv, 2023

[3] William Berrios, Gautam Mittal, Tristan Thrush, Douwe Kiela, and Amanpreet Singh. Towards language models that can see: Computer vision through the lens of natural language. Arxiv, 2023 [4] Deyao Zhu, Jun Chen, Xiaogian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-language understanding with advanced large language models. In Arxiv, 2023

But, let's imagine a case ...

A curious boy encountered a unique challenge when collecting several unlabeled images from a smartphone located in the Amazon jungle. Tasked with identifying the diverse bird species within these images, the boy faced a daunting task, especially without any prior knowledge of species names typically provided by ornithologists.

Can the modern systems help him?

What is the name of the main object in this photo?

BLIP-2¹: Sparrow!

LENS³: Vesper Sparrow!

LLaVA-1.5²: Sparrow!

GT: Lincoln's Sparrow

[®]MiniGPT-4⁴: White-throated Swainson Sparrow!

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In Arxiv, 2023
Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Arxiv, 2023

[3] William Berrios, Gautam Mittal, Tristan Thrush, Douwe Kiela, and Amanpreet Singh. Towards language models that can see: Computer vision through the lens of natural language. Arxiv, 2023 (4) Deyao Zhu, Jun Chen, Xiaogian Shen, Xiang Li, and Mchamed Elhoseinv, Miniget 4: Thancing vision-language understanding with advanced large language models. In Arxiv, 2023 What is the name of the main object in this photo?

BLIP-2¹: Sparrow!

Sparrow!

[1] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In Arxiv, 2023 an Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Arxiv, 2023

[3] William Berrios, Gautam Mittal, Tristan Thrush, Douwe Kiela, and Amanpreet Singh. Towards language models that can see: Computer vision through the lens of natural language. Arxiv, 2023 [4] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-language understanding with advanced large language models. In Arxiv, 2023.

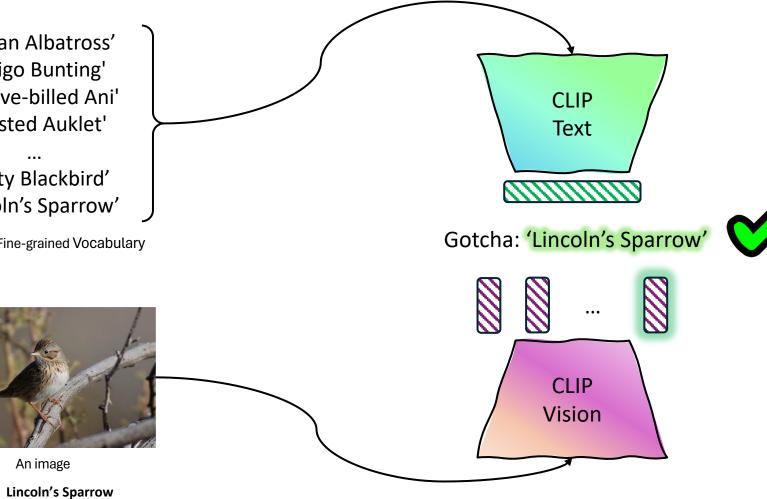
'Laysan Albatross' 'Indigo Bunting' 'Groove-billed Ani' 'Crested Auklet'

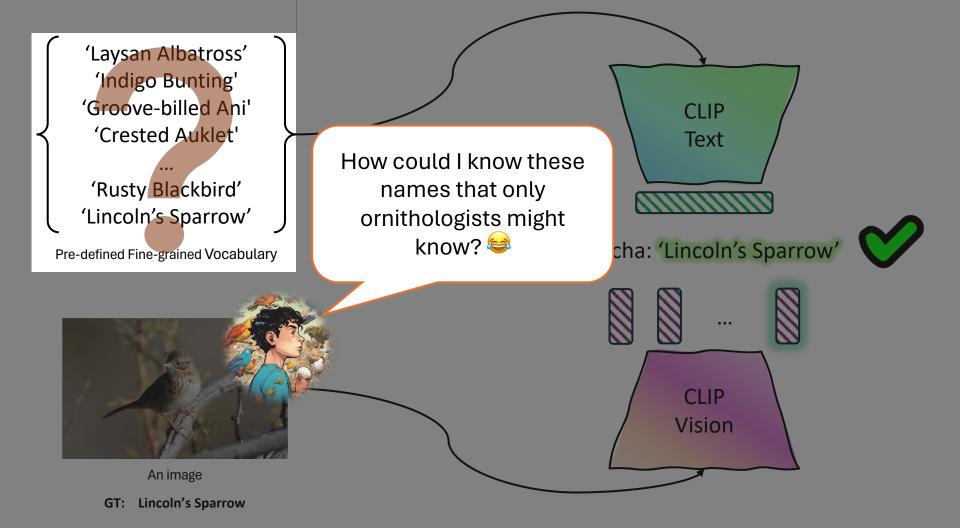
'Rusty Blackbird' 'Lincoln's Sparrow'

• • •

Pre-defined Fine-grained Vocabulary

GT:





Can we build an effective system that can automatically discover fine-grained concepts (names) from few unlabeled observations and thereby classify them?

Problem Formulation

This is essentially a Vocabulary-free FGVR task with only few unlabeled samples as observation

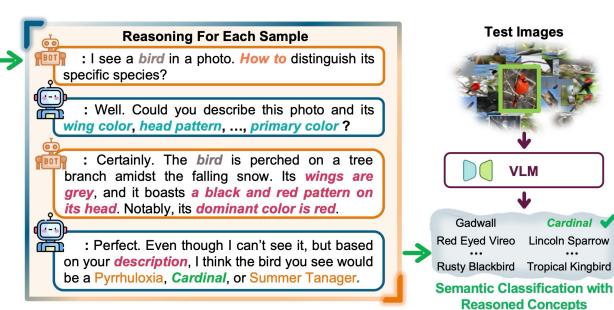
Method

We proposed **FineR** : A Fine-grained Semantic Category Reasoning System with LLMs that reason finegrained concepts from few observation and thereby facilitate vocabulary-free FGVR

Visual Question Answering Model

Large Language Model

Vision-Langauge Model



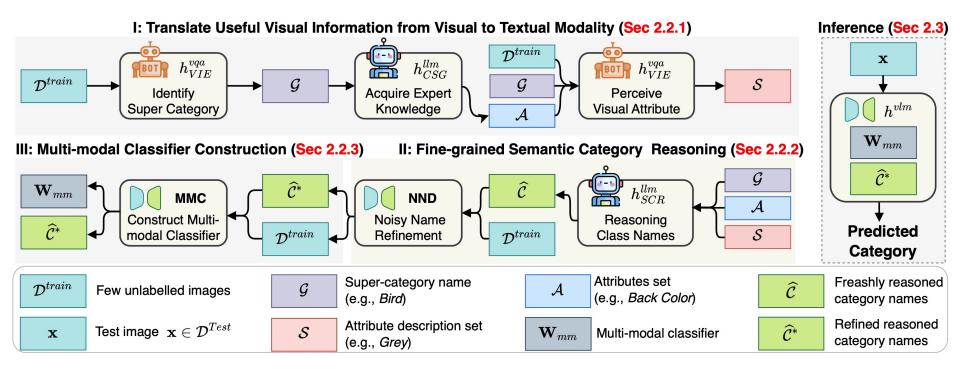
Reasoning Concepts from Observations

Inference

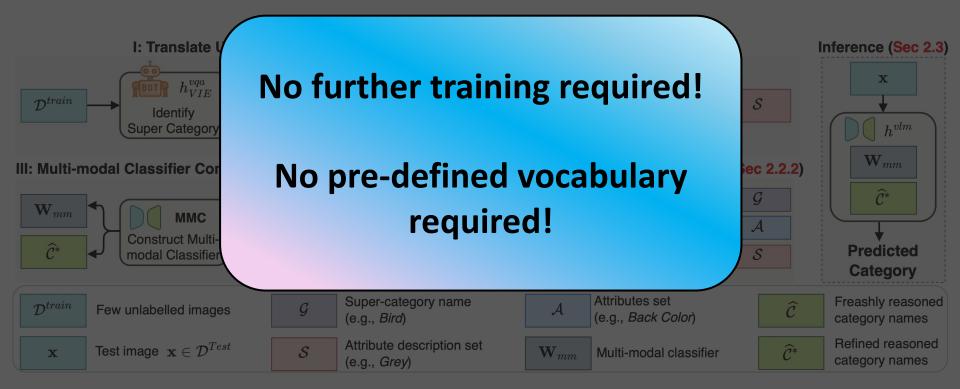
Cardinal

Just like what human would do ...

Overview of FineR System



Overview of FineR System



Experimental Results

RECO

FINE-GRAINED

Evaluation Metrics

1. Are they semantically close?

Semantic Similarity (sACC):

Cosine similarity of embeddings of predicted label vs GT

Clustering Accuracy (cACC)

Hungarian match between clusters of predictions vs GT clusters

2. Do samples of the same category get predicted with the same label?

Quantitative Results

vs. SOTAs

		l-200 sACC		r-196 sACC		g-120 sACC		er-102 sACC	Pe cACC	t-37 sACC		erage sACC
Zero-shot (UB)	57.4	80.5	63.1	66.3	56.9	75.5	69.7	77.8	81.7	87.8	65.8	77.6
CLIP-Sinkhorn DINO-Sinkhorn	23.5 13.5	-	18.1 7.4	-	12.6 11.2	-	30.9 17.9	-	23.1 5.2	-	21.6 19.1	-
KMeans	36.6	-	30.6	-	16.4	-	66.9	-	32.8	-	36.7	-
WordNet	39.3	57.7	18.3	33.3	53.9	70.6	42.1	49.8	55.4	61.9	41.8	54.7
BLIP-2 CLEVER †	30.9 7.9	56.8 -	43.1	57.9	39.0	58.6	61.9 6.2	59.1	61.3	60.5 -	47.2	58.6
SCD †	46.5	-	-	-	57.9	-	-	-	-	-	-	-
CaSED	25.6	50.1	26.9	41.4	38.0	55.9	67.2	52.3	60.9	63.6	43.7	52.6
FineR (Ours)	51.1	69.5	49.2	63.5	48.1	64.9	63.8	51.3	72.9	72.4	57.0	64.3

Table 1: cACC(%) and sACC (%) comparison on the five fine-grained datasets. $|\mathcal{D}_c^{\text{train}}| = 3$. Results reported are averaged over 10 runs. \dagger : SCD and CLEVER results are quoted from original paper (SCD uses the *entire* dataset for class name discovery and assumes the number of classes known as *a-priori*). Best and second-best performances are coloured **Green** and **Red**, respectively. Gray presents the upper bound (UB).

Given 3 images per class for discovery, FineR outperforms the 2ndbest model by **+9.8%** in cACC and **+5.7%** in sACC on the five finegrained datasets

Flower-102

BLIP-2:	Rufous Tanager
CaSED:	Tanager
FineR (Ours):	Orchard Oriole
Ground-truth:	Jeep Grand Cherokee SUV 2012
WordNet:	Cherokee
BLIP-2:	Jeep Compass
CaSED:	SUV
FineR (Ours):	Jeep Grand Cherokee SUV 2012
Ground-truth:	Lotus
WordNet:	Lotus
BLIP-2:	Lotus
CaSED:	Lotus

Acridotheres Tristis

Ground-truth: Orchard Oriole

WordNet:

WordNet: Slate-colored Junco BLIP-2: Junco CaSED: Junco FineR (Ours): Dark-eyed Junco Ground-truth: Bentley Continental GT Coupe 2012 Platinum Black WordNet: BLIP-2: **Bentley Continental GT**

Ground-truth: Dark-eyed Junco

CaSED:

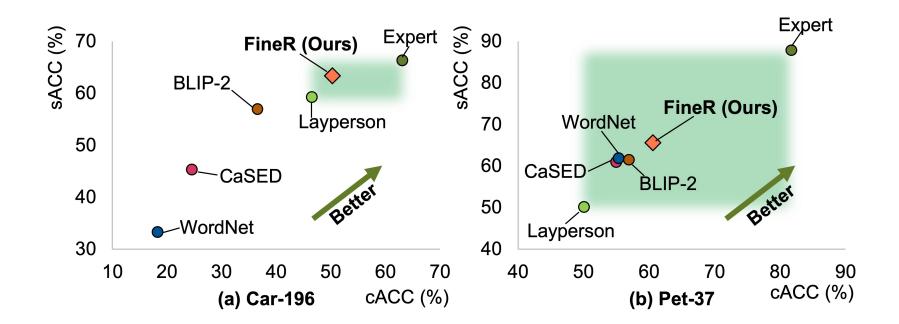
Bentley FineR (Ours): Bentley Continental GT Sedan 2010 Ground-truth: Blackberry Lily Peruvian Lilv Lilium Senegalensis Gloriosa FineR (Ours): Orange-spotted Lily

Prediction Indicator Correct Prediction Partially Correct Prediction Incorrect Prediction Even more precise than ground-truth names

Qualitative Results:

FineR (Ours): Pink Lotus

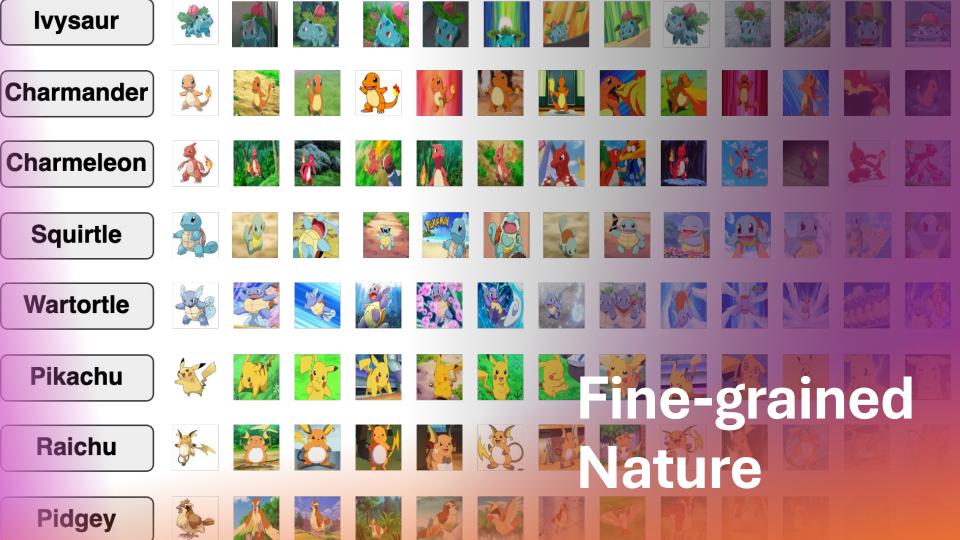
FineR not only shows better and finer predictions, but also demonstrates its semantic-awareness, therefore making better mistakes!

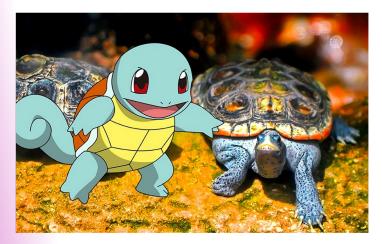


From layperson to expert - where do we stand?

A human study: FineR presents better performance than layperson on fine-grained Car and Pet recognition tasks.

What about virtual objects?





Squirtle

VS.

Turtle

New Challenge

Rose-Breasted Grosbeak

VS.

Pidgey

Real-world Analogs

Comparison on the new Pokemon Dataset

Methods based on knowledge base (large corpus base like WordNet) retrieval are in effective for virtual concepts due to the real-world analogs (e.g., Turtle). However, FineR is still robust and approach upper-bound performance

Method	GT Hit Rate	Discovered Names			mon-10 sACC
WordNet		Falkner, Turtler, Shiny Lyonia, Chicken Hawk, Gerfalcon, Pika, Garrison, irdlime, Patrol, Tyto, Firedrake, Pokeweed, Archean Eon, Panduriform Leaf	Zero-shot (UB)	70.8	89.2
BLIP-2	2/10-{	Sylveon Squirtle, Pikachu }	WordNet	34.6	33.1
CaSED	2/10-{	Interbreeding, Pikachu, Turtle, Plant, Pokemon, Bulbasaur, Bird	BLIP-2	32.3	55.4
FineR (Ours)	7/10 { Gr	eenleaf Squirtle, Charmander, Charmeleon, Squirtle, Wartortle, Pikachu, Raichu,Pidgeotto, Pichu, Sadtail Pikachu, <u>Flower Squirtle</u>	CaSED FineR (Ours)	39.2 70.8	55.7 81.6
		(a) Discovered names and GT Hit Rate	(b) Quantitative Results		
	Bulbasaur	Ivysaur			

Time to Wrap up

Conclusion

- We proposed a novel Vocabulary-free FGVR task with only few observations
- To achieve this challenging task, we designed *FineR system* that uses LLM to reason fine-grained semantic concepts from only few image observation
- FineR quantitatively and qualitatively demonstrates *better performance* on both real and virtual fine-grained benchmarks

Subhankar ROY

Wenjing Ll

Zhun ZHONG Nicu SEBE

Elisa RICCI

We thank you for your listening!

Project page: