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Visual Question Answering with Natural Language
Explanation (VQA-NLE) (1/2)

e Goal:
Besides generating answer, vision-language models are required to provide
natural language explanations (NLE) that represent their reasoning process.
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Visual Question Answering with Natural Language
Explanation (VQA-NLE) (2/2)

e Goal:
Besides generating answer, vision-language models are required to provide

natural language explanations (NLE) that represent their reasoning process.
e Challenges:

The NLE from VLMs are often implausible and hallucinated (next slide).
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Motivation - challenge (1/3)

e Implausibility: NLEs are not relevant to the question.
i.e., the building in image (tower) is not related to the weather.
e Hallucination: NLEs are not related to the image.
i.e., the big sun cannot be observed from image.
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Motivation - challenge (2/3)

e Implausibility: NLEs are not relevant to the question.
This happens when VLMs lack the knowledge required to answer this question.

e Hallucination: NLEs are not related to the image.
This happens when VLMs explain w/ lang-based fact instead of image understanding.
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Motivation - solution (3/3)

e Plausiblity (no implausiblity):
=> Exploit the the knowledge inside LLMs.
e Faithfulness (no hallucinaton):

=> Learn to incorporate visual clues from input images.

® Achieved by using rationale as part of input prompt to VLMs.
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(b) Reinforced Rationale-Prompted VQA-NLE paradigm (Rapper, ours)
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Method - overview

® To generate plausible and faithful NLE, we learn the rationale through two stages:

(A) Knowledge Distillation from LLM.mpexploiting the knowledge inside LLMs
(B) Reinforcement Learning from NLE Feedback.mpincorporating visual clues from images
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Method - Knowledge Distillation from LLM

® Goal: plausible NLE generation

Stepl. KD for fact-based rationale generation (train G)
Step2. Prompting by fact-based rationale for plausible NLE (train M)
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Method - Reinforcement Learning from NLE Feedback (RLNF) (1/3)

e Goal: faithful NLE generation
Stepl. RLNF for injecting visual facts into rationales (train G, freeze M)
Step2. Prompting by visual-fact-based rationale for faithful NLE (train M, freeze G)
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Method - Reinforcement Learning from NLE Feedback (RLNF) (2/3)

e Goal: faithful NLE generation
Stepl. RLNF enforces the derivation of visual facts from image to rationale (train G, freeze M)

O This is achieved by penalizing the fact-based but hallicinated rationales (R’), while
rewarding the rationales (R) that contain both established facts and visual content.

O Reward = Prob(gt_ans) + CIDEr(gt_exp, pred_exp)
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Method - Reinforcement Learning from NLE Feedback (RLNF) (3/3)

e Goal: faithful NLE generation
Stepl. RLNF for injecting visual facts into rationales (train G, freeze M)
Step2. Prompting by visual-fact-based rationale for faithful NLE (train M, freeze G)

O  With the visual-fact-based rationales being part of its input prompts, NLEs from reasoning
module (M) are retained with plausiblity and faithfualness.
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Quantitative results (1/2)

® On two VQA-NLE benchmarks, Rapper achieves SOTA performances in terms of all

natural language generation (NLG) metrics.

e CIDEr and SPICE are considered as metrics reflecting plausibility in NLE.

VQA-X
Method
B@l B@2 B@3 B@4 METEOR ROUGE-L CIDEr SPICE Accuracy

PJ-X (Park et al., 2018) 574 42.4 30.9 22.7 19.7 46.0 82.7 171 76.4
FME (Wu & Mooney, 2018b) 59.1 43.4 31.7 23.1 20.4 47.1 87.0 18.4 15.5
RVT (Marasovic¢ et al., 2020) 51.9 37.0 25.6 17.4 19.2 42.1 525 15.8 68.6

QA-only (Kayser et al., 2021) 51.0 36.4 253 17.3 18.6 41.9 499 14.9 -
e-UG (Kayser et al., 2021) 57.3 42.7 314 232 221 45.7 74.1 20.1 80.5
NLX-GPT (Sammani et al., 2022) | 64.2 49.5 37.6 28.5 23.1 51.5 110.6 22.1 83.07
S3C (Suo et al., 2023) 64.7 50.5 38.8 30.7 239 521 116.7 23.0 85.6
Rapper (ours) 65.5 51.6 40.5 31.8 24.3 52.9 124.0 24.5 87.25

e-SNLI-VE
Method
B@l B@2 B@3 B@4 METEOR ROUGE-L CIDEr SPICE Accuracy

PJ-X (Park et al., 2018) 294 18.0 11.3 73 14.7 28.6 72.5 24.3 69.2
FME (Wu & Mooney, 2018b) 30.6 19.2 12.4 8.2 15.6 299 83.6 26.9 137
RVT (Marasovic et al., 2020) 299 19.8 13.6 9.6 18.8 27.3 81.7 32.5 72.0

QA-only (Kayser et al., 2021) 29.8 19.7 13.5 9.5 18.7 27.0 80.4 32.1 -
e-UG (Kayser et al., 2021) 30.1 19.9 13.7 9.6 19.6 27.8 85.9 34.5 79.5
NLX-GPT (Sammani et al., 2022) | 37.0 25.3 17.9 12.9 18.8 342 117.4 33.6 73.91
Rapper (ours) 40.5 28.1 20.2 14.7 20.8 35.9 128.6 34.9 75.73
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Quantitative results (2/2)

® The upper part of this table demonstrates Rapper enhances the faithfulness in NLE
compared to existing SOTA methods.

® The lower part of this table shows that RLNF increases the faithfulness in NLE.

e RefCLIPScore is a metric to reflect faithfulness in NLE.

Method | RefCLIPScore(1)
Much recent VL-NLE works

NLX-GPT 64.06

S3C 65.09

Our stage-ablated approaches

Rapper (w/o KD and w/o RLNF) 66.00
Rapper (w/o RLNF) 65.66
Rapper 67.05
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Qualitative results

e Blue: plausible and faithful NLE
® : implausible NLE
e Red: hallucinated NLE

Multimodal
Input

"(b)

5 | s (©)
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S3C P A ! No i Yes : Sheep
 E | There are only a few items onit | There is a train in the stations + It has a long snout and white fur
; R + The table is not cluttered because : The presence of asian writing on the train suggests : A sheep is a type of animal that has
i i there is only one object on it » that it is in an asian country : wool on its body
Rapper : A ! No 1 Yes . Sheep
E There is only one object on it There is asian writing on the train Its has wool on its body
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Conclusion

e RAPPER enables VLMs generate NLEs with sufficient plausibility and
faithfulness on VQA task.

e RAPPER composed of two-training stages:
1. Knowledge Distillation from LLMs
2. Reinforcement Learning From NLE Feedback (RLNF)
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Thank you for listening!



