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Theory

Proposition 3.1 (Non-Gaussian Ipverse Probability). For the di/ﬁmion process defined in Eq. (1),

suppose that the real data follow a Gaussteanixture: q(Xg) = Z pe1 WeN (X0 pre, L), which
consists of K Gaussian components with mixture wei Y nean vector piy, and covariance matrix
3k, then the posterior forward probability q(x;—1 | X¢) at every~ieration t € [1,T] is another

mixture of Gaussian distributions:

K

q(xe—1 | x¢) = > wpN (xe—1; pi, ), (6)

k=1
where w_, p). depend on both variable X, and pu;.
Remark 3.1. The Gaussian mixture in theory is a universal approximator of smooth probability

densities (Dalal & Hall, 1983; Goodfellow et al., 2016). Therefore, this proposition implies that the
posterior forward probability ¢(x;_1 | x;) can be arbitrarily complex.

Theorem 3.1 (Uniformly Unbounded Denomng Error). For the diffusion process defined in Eq. (1)
and the Gaussian denoising process a there exists a continuous data distribution
q(xq) (more specifically, Gaussian mixture) such that My is unijormty 1ded—given any real
number N € R, the inequality M; > N holds for every denoising iteration t € |1

Theorem 3.2 (Unbounded Approximation Error). For the forward and backward processes respec-
tively defined in Eq. (1) and Eq. (2), given any real number N € R, there exists a continuous data
distribution q(xq) (specifically, Gaussian mixture) such that € > N.

Insights: the Gaussian denoisier
IS not expressive enough and
the previous assumption of
bounded errors is too strong

Insight: as expected, the local
and global denoising errors are
unluckily unbounded



Method

* A continuously relaxed Gaussian mixture (instead of simple Gaussian)
for backward denoising

po(xet | Xe) = N et po (%1, ), 00]), — 55120 = [ 552 0en,2 [ ez = [ 5500 |30 e | .2

* Theoretical guarantee

Theorem 4.1 (Expressive Soft Mixture Denoising). For the diffusion process defined in Eq. (1), sup-
pose soft mixture model p%MD(xt_l | x¢) is applied for backward denoising and data distribution

q(xo) is a Gaussian mixture, then both M; = 0,Vt € [1,T] and & = 0 hold.
* Loss function for optimization

T
LMD — €+ Y B [Tell€ = €0U s 0er.0 (VAo + VI = e, 1),
t=1



Experiments — Partl

 Synthetic data
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Experiments — Part2

 Few backward iterations

(a) Baseline: vanilla LDM; FID: 11.29.

(b) Our model: LDM w/ SMD:; FID: 6.85.
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Figure 3: SMD reduces
the number of sampling
steps. Latent DDIM and
DDPM for different iterations
on CelebA-HQ (256 x 256).



