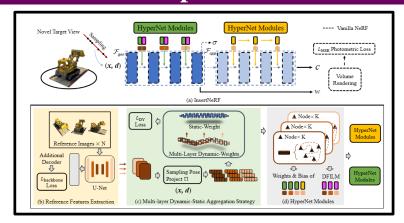
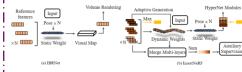


Yanqi Bao¹, Tianyu Ding², Jing Huo^{1*}, Wenbin Li¹, Yuxin Li¹, Yang Gao¹ 1 State Key Laboratory for Novel Software Technology, Nanjing University, China 2 Microsoft Corporation, Redmond, USA


Motivation

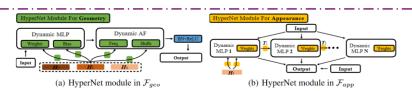
How to directly **INS**till gEneRalizabiliTy into NeRF? (InsertNeRF)


- **InsertNeRF** can insert generalization to NeRF's derivative works, such as mip-NeRF, NeRF++.
- InsertNeRF has forsaken time-consuming components such as transformers or cost volumes, which are mentioned in existing works.

Pipeline

InsertNeRF, a novel paradigm that inserts multiple **plug-and-play HyperNet modules** into the NeRF-like framework, endowing NeRF-like systems with instilled generalizability.

HyperNet Modules



Sampling-aware Filter:

Based on a Graph Structure $H_l = (I - A_l) F_{\text{view}} W_l^a$

InsertNeRF proposes a Multi-Layer Dynamic-static aggregation strategy, which models the **views-occlusion** and globally completes information based on the multi-view relationships.

Dynamic Activation Function: Based on DFiLM:

Dynamic MLP:

Two different types of HyperNet Modules for Geometry and Appearance

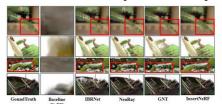
Quantitative Experiments

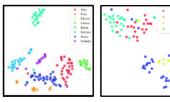
Quantitative experiments on different settings:

Table 1: Comparisons of InsertNeRF against SOTA methods with Setting I.

Methods		RF Synth SSIM†	netic LPIPS↓	PSNR↑	LLFF SSIM↑	LPIPS↓	PSNR†	DTU SSIM↑	LPIPS↓
PixelNeRF (CVPR2021)	22.65	0.808	0.202	18.66	0.588	0.463	19.40	0.463	0.447
MVSNeRF (ICCV2021)	25.15	0.853	0.159	21.18	0.691	0.301	23.83	0.723	0.286
IBRNet (CVPR2021)	26.73	0.908	0.101	25.17	0.813	0.200	25.76	0.861	0.173
ContraNeRF (CVPR2023)	-	-	-	25.44	0.842	0.178	27.69	0.904	0.129
GeoNeRF [†] (CVPR2022)	28.33	0.938	0.087	25.44	0.839	0.180	-	-	-
WaveNeRF [†] (ICCV2023)	26.12	0.918	0.113	24.28	0.794	0.212	-	-	-
NeuRay(CVPR2022)	28.92	0.920	0.096	25.85	0.832	0.190	28.30	0.907	0.130
InsertNeRF (Ours)	30.35	0.938	0.065	26.44	0.844	0.169	29.75	0.925	0.077

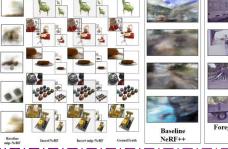
Table 2: Comparisons and ablations with Setting II.

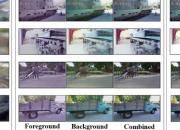

Methods	Ne	RF Synth	etic	LLFF			
Methods	PSNR↑	SSIM↑	LPIPS.	PSNR↑	SSIM↑	LPIPS1	
GNT (ICLR2023)	27.29	0.937	0.056	25.59	0.858	0.128	
Baseline (NeRF)	7.29	0.512	0.690	11.46	0.328	0.582	
NeRF with HyperNetwork	25.86	0.902	0.081	24.25	0.793	0.177	
InsertNeRF w/o MLDS	25.12	0.896	0.098	24.41	0.814	0.156	
InsertNeRF (Ours)	27.57	0.936	0.056	25.68	0.861	0.126	


Table 3: Results with sparse inputs.

Methods	3-view					
Methous	PSNR↑	$SSIM\uparrow$	LPIPS1			
DietNeRF (ICCV 2021)	14.94	0.370	0.496			
RegNeRF (CVPR 2022)	19.08	0.587	0.336			
GeCoNeRF (ICML 2023)	18.77	0.596	0.338			
FreeNeRF (CVPR 2023)	19.63	0.612	0.308			
InsertNeRF (w/o retrain)	19.41	0.618	0.330			

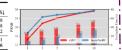
Qualitative Experiments


Vanilla NeRF and t-SNE plot of the scene-specific representation:



Insert Mip-NeRF:

Insert NeRF++:



Ablations

HyperNet Modules ablations:

Methods	PSNR†	LLFF SSIM†	LPIPS↓	28
w/o D-MLP	23.33	0.774	0.198	26
w/o Sampling Filter	24.67	0.815	0.158	PSNR 30
w/o DFiLM	25.04	0.832	0.152	
w/o original MLP	25.44	0.848	0.131	- 16
InsertNeRF (Ours)	25.68	0.861	0.126	12

Efficiency:

MLDS aggregation strategy ablations:

Static- Weight		Auxiliary- Supervision				LLFF SSIM†	LPIPS
✓			✓		24.88	0.827	0.154
✓	✓		✓		25.55	0.851	0.128
	✓	✓	✓		25.53	0.850	0.131
√	✓	✓		✓	25.15	0.838	0.139
✓	✓	✓	✓		25.68	0.861	0.126

Conclusion

Key: plug-and-play HyperNet modules, endowing NeRF-like systems with instilled generalizability.

Future: We hope that such representations can find more applications in generalized

l Ben Mildenhall Pratul P Sriniyasan Matthew Tancik Jonathan T Barron Ray amamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for