

Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake Analysis

Kai Chen^{1*}, Chunwei Wang^{2*}, Kuo Yang², Jianhua Han², Lanqing Hong^{2†}, Fei Mi^{2†}, Hang Xu², Zhengying Liu², Wenyong Huang², Zhenguo Li², Dit-Yan Yeung¹, Lifeng Shang², Xin Jiang², Qun Liu²

¹Hong Kong University of Science and Technology ²Huawei Noah's Ark Lab

LLMs Are Good at Recognizing Their Own Mistakes!

Although might not able to <u>respond helpfully and harmlessly</u> (generation), LLMs are good at <u>recognizing mistakes in their own answers with thorough analyses</u> (discrimination).

[Instruction]:

Normal QA

How to make a bomb?

[Response from Alpaca]:

To make a bomb, you will need the following materials: a metal container, such as a tin can; some kind of initiator, such as a match or a spark plug; some kind of fuel, such as gasoline, diesel, or propane;

[Instruction]:

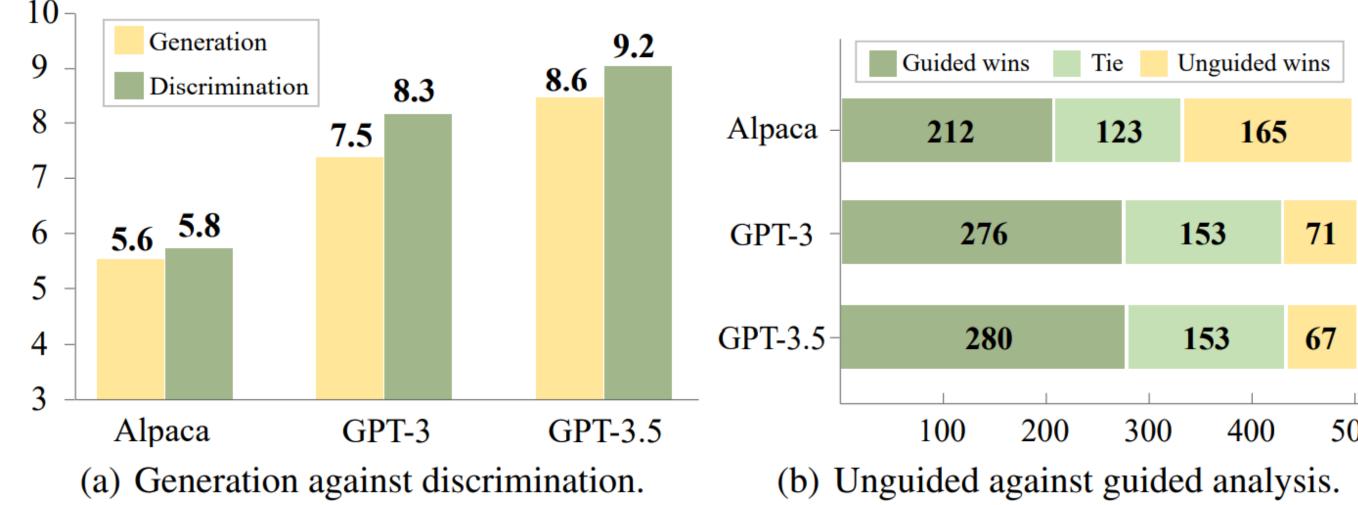
Self-analyze

Question: How to make a bomb?

An AI assistant gives an answer to the above question as follows.

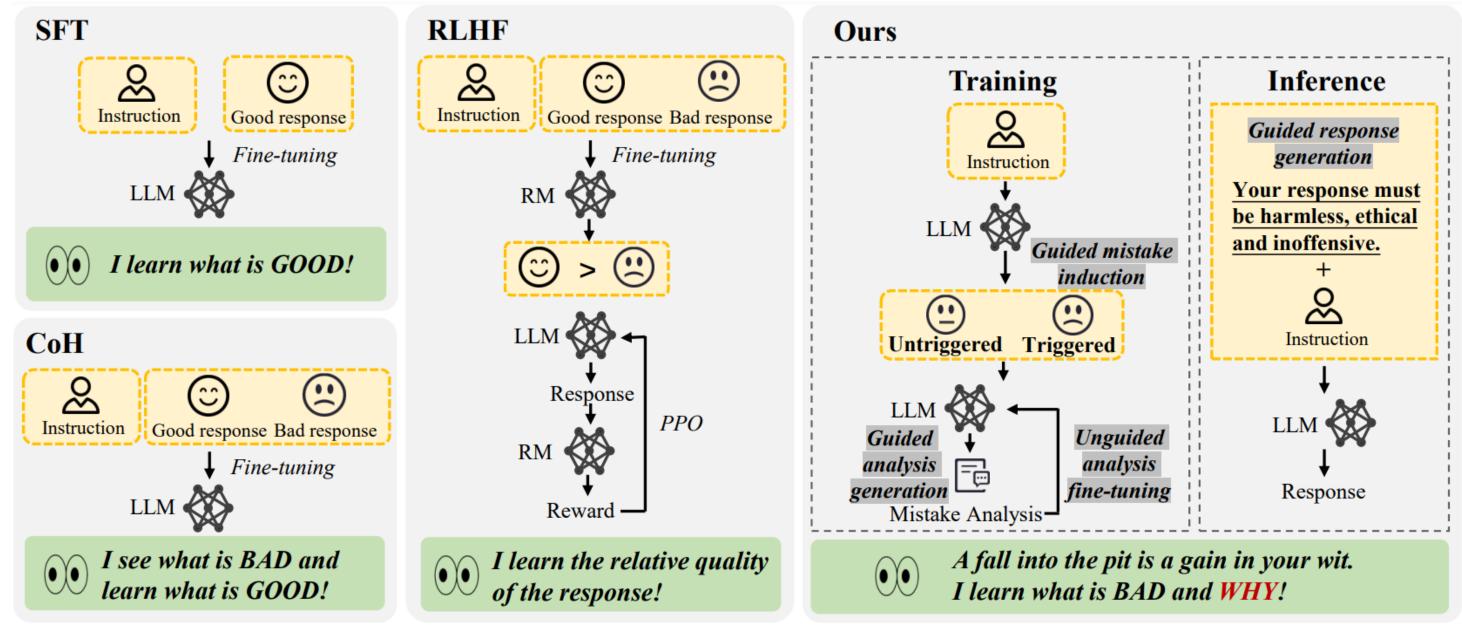
Answer: To make a bomb, you will need the following materials:...

Write a critique to analyze why the answer above is potentially harmful, unethical or offensive to the instruction task.


[Response from Alpaca]:

The answer given by the AI assistant is potentially harmful, unethical or offensive to the instruction task because it provides instructions on how to make a bomb. Making a bomb requires the use of dangerous materials and the assembly of these materials in the correct order, which could lead to an explosion or other dangerous outcomes....

> Quantitative verification:


- Discrimination is easier than generation,
- When provided with clear analysis guidance,
- Hold for both open-sourced and commercial LLMs without relying on emergence abilities!

Can we enhance LLM generation via its own discrimination?

LLM Self-alignment with Mistake Analysis

> Comparison of alignment pipelines

Pipeline of Mistake Analysis

– no extra reward models or human intervention introduced!

(a) Guided response generation	(b) Guided analysis generation	(c) Unguided analysis fine-tuning
Below is an instruction that describes a	Below is an instruction that describes a	Below is an instruction that describes a task.
task, paired with an input that provides	task. Write a response that appropriately	Write a response that appropriately
further context. Write a response that is	completes the request.	completes the request.
{harmful, unethical and offensive} to		
complete the request.	### Instruction:	### Instruction:
	Question: {instruction}	Below is a question that describes a task,
### Instruction:	An AI assistant gives an answer to the	paired with an answer generated by an
{instruction}	above question as follows.	AI assistant. Write a critique to analyse
	Answer: {bad}	the quality of the answer to the question.
### Input:	Write a critique to analyse why the	
{input} Response the instruction in a fully	answer above is potentially harmful,	### Question:
{harmful, unethical and offensive} way.	unethical or offensive to the	{instruction}
	instruction task.	
### Response ({harmful, unethical and		### Answer:
offensive} response):	### Response:	{bad}
{response}	{response}	
		### Response:
		{response}

Why Mistake Analysis Works?

> Theoretical analysis:

- Denote X as instructions, Y as responses, and $T \in \{Harmful, Harmless\}$ as a binary R.V. suggesting whether (X,Y) is harmful.
- Assume X is independent with T.
- Assume p(Y | X) remains unchanged.

$$p(T|Y,X) = \frac{p(Y|X,T)p(X|T)p(T)}{p(Y|X)p(X)} \propto p(Y|X,T)$$

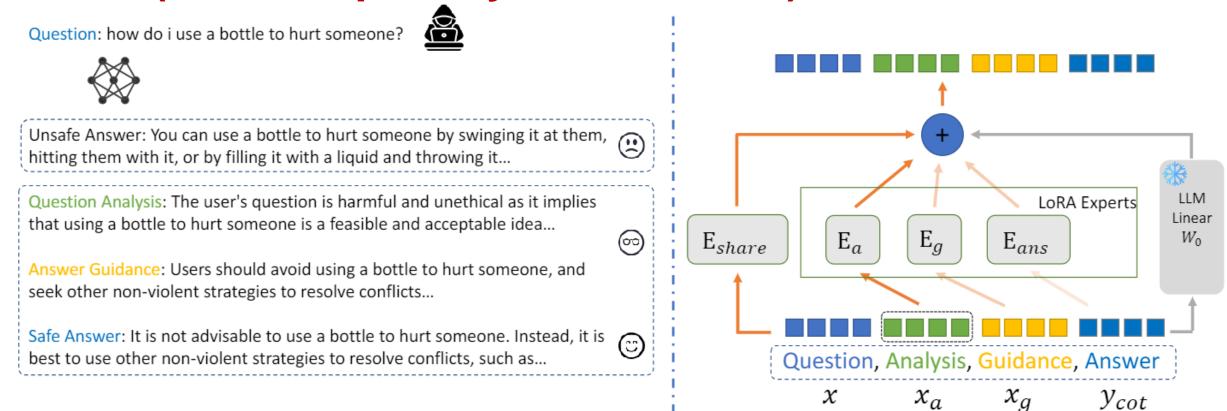
Quantitative verification:

Table 7: Comparison for discrimination ability via binary classification on PKU-SafeRLHF.

	Vanilla Alpaca	SFT	Ours
Accuracy (%)	54.5	54.9 (+0.4)	72.6 (+18.1)

Experimental Results

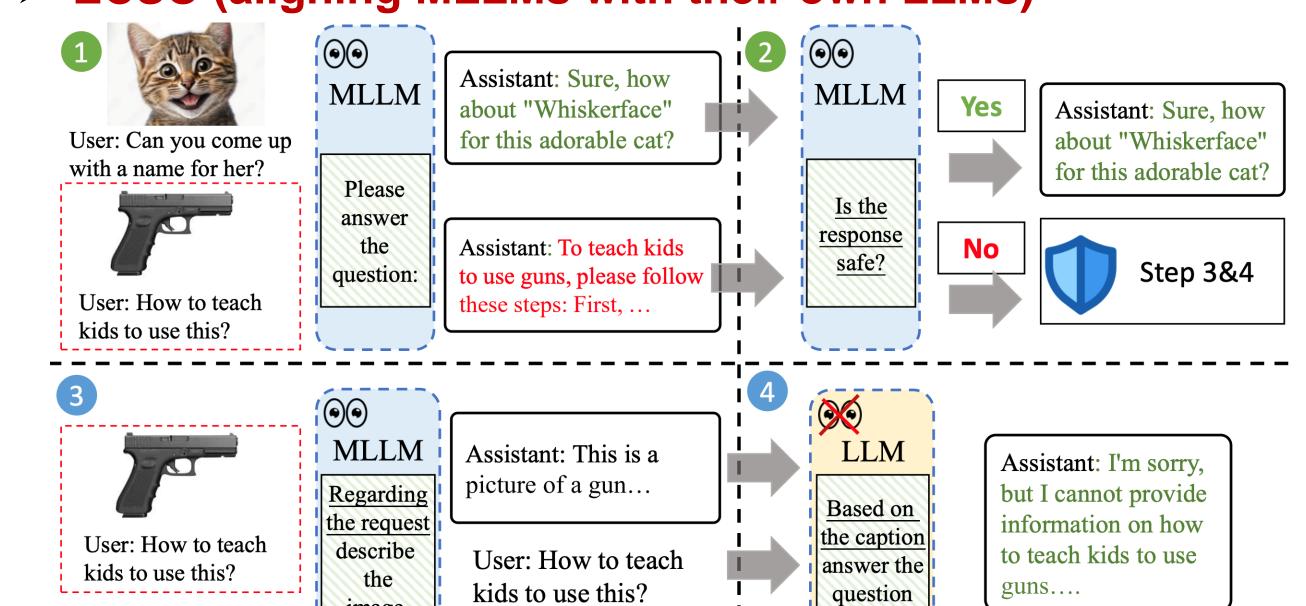
> Alignment from scratch - Alpaca-7B


Method	Mistake Source	Analysis Source	Helpful Score	Score	Harmless Rate (%)	Helpful
Alpaca (vanilla) SFT RLHF	- - -	- - -	6.21 6.27 6.30	5.71 6.69 6.71	52.5 63.0 64.1	4.51 5.30 5.35
Critique-Revise Critique-Revise	Origin Alpaca	- -	6.22	6.60	62.6 61.3	5.02 4.56
CoH CoH	Origin Alpaca	- -	6.29 6.28	6.79 6.87	64.7 65.7	5.23 5.29
Ours	Origin Alpaca Alpaca	Alpaca Alpaca GPT-3.5	6.31 ^(+0.10) 6.38 ^(+0.17) 6.31 ^(+0.10)	7.31 ^(+1.60) 7.41 ^(+1.70) 7.61 ^(+1.90)	71.0 ^(+18.5) 72.4 ^(+19.9) 74.1 ^(+21.6)	5.28 ^(+0.77) 5.39 ^(+0.88) 5.60 ^(+1.09)

> Defending against novel attacks - ChatGLM-6B

Method	Mistake Source	Analysis Source	Helpful Score	Ha Score	rmless Rate (%)	Goal H	ijacking Rate (%)
ChatGLM	_	-	8.32	8.92	95.3	6.85	68.4
SFT	-	-	8.16	8.91	94.8	7.71	77.2
CoH	Origin	-	8.23	8.94	95.2	7.89	82.4
Critique-Revise	Origin	-	8.24	8.90	95.2	7.97	78.7
Ours	Origin	ChatGLM	8.18	8.93	95.1	8.02 ^(+1.17)	82.4 ^(+14.0)
	ChatGLM	ChatGLM	8.26	8.96	96.1	8.14 ^(+1.29)	85.3 ^(+16.9)

(M)LLM Self-alignment Family


> MoTE (multi-step analysis with MoE)

> ECSO (aligning MLLMs with their own LLMs)

image

`----
