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e Many problems in science and engineering involve solving complex partial differential equation (PDE) systems.
e Examples: molecular dynamics, micro-mechanics, turbulent flows, weather fluctuations etc.

e Traditional solvers : slow and do not scale to large systems well.

e Neural Operators : fast, scalable and resolution invariant. @
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Challenges:

e Real world system - irregular measurement data, noisy measurement etc.

e Vanilla NO doesn’t maintain history or have a well motivated recurrent structure.

e NO drawbacks : error accumulation for long rollouts and sensitivity to noise in the data.

e NO is incapable of making use of future measurements.

e NO literature lacks a systematic framework for data assimilation.

e Infinite dimensional Kalman filters : estimate the state of a system governed by some underlying
infinite-dimensional PDEs based on measurements.

e Kalman filters based observers requires tremendous computational resources, limiting their application to
large-scale systems.

e In this paper we propose a general framework for data assimilation for NO by exploiting the structure of semilinear

PDEs .
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Main Contribution: 3 I c L R

e We extend the NO theory by leveraging the observer design of semilinear PDEs.

e We break the observer solution into prediction and update steps.

e The resulting recurrent framework can estimate solutions using arbitrary amounts of time measurements.
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Semilinear PDE system and observer design: ﬁ I c L R

e System equation based on semilinear evolution:

Az(t) + G(z(t),t) + w(t),

z(0) = 2o,
y(t) = Cz(t) + ().

e Observer design:

0z(t
g(f ) = A5(t) + G(3(),t) + K (1) [y(t) — C2(1)
Z(tk) = T(tk — th—1)2(tk—1) + / T(tr — s)G(2(s),s)ds + / T(tx — s)K(s)[y(s) — C%(s)]ds
Jitg—1 Jitg—1
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NODA framework: 3 I C L R

e NODA prediction and update step,

~pred ~ A
26— B F W (2 5 ) Prediction step

%, = 2570 + K (2P [y(te) — B(2E™°Y)] Correction step

Uk
e Kalman gain,

K (2P [u] = tanh (W, E(22"%) + W,y(ts) +b) © (C*u)

e Training loss :

Wl + o S5 190w - BED),

=1 k=1 i=1.k=l
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Table 2: Averaged ReIMSE (x10?) for prediction (o« = 0%) on the Navier-Stokes equation as a ’ -
function of the sequence length ¢ ¢ and of the SNR. 5 ‘ ’

SNR 20 dB 30 dB 00 2 7 .

ty 500 750 1000 500 750 1000 500 750 1000 S p

MNO 48+7 7216 96+12 3944 S1E7 87+6 18+3 2243 26+5 .

FNO 1924+10 294+12 351414 | 189+£19 265421 317416 | 13611 177+14 265+16

MWNO 172+£10 226+9 278+11 14749 19249 240410 78+5 104+6 188411

C-LSTM | 487£15 522410 604+18 | 397£20 42617 48119 | 36611 417+13 529+11 .

NODA 10£2 18+4 3246 8+1 13+2 26+4 7+1 8+1 13+2 E

Table 3: Averaged ReIMSE (x 10?) of NODA for the Navier-Stokes equation as a function of «. . . .
a 0% 10% 20% 30%

Averaged ReIMSE | 26+4 18+4 13+£3 943

Figure 1: Samples of a realization of a true trajectory of the
Navier-Stokes equation for ¢t € {150, 300,450} (Top Row),
and elementwise error plots for the corresponding predic-
tions by NODA (Bottom Row).
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Thank you for listening!
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