Learning semilinear Neural Operators: A unified recursive framework for prediction and Data Assimilation.

Ashutosh Singh*, Ricardo Augusto Borsoi*, Deniz Erdogmus, Tales Imbiriba -ICLR 2024

This work was supported by NIH OT2OD030524, NSF 2316420, ANR23-CE23-0024, ANR-23-CE94-0001

Parametric PDEs and Neural Operator

- Many problems in science and engineering involve solving complex partial differential equation (PDE) systems.
- Examples: molecular dynamics, micro-mechanics, turbulent flows, weather fluctuations etc.
- Traditional solvers : slow and do not scale to large systems well.
- Neural Operators : fast, scalable and resolution invariant.
 Parametric PDE :

 $\begin{aligned} (L_a z)(x,t) &= f(x,t) \,, \\ z(x,t) &= 0 \,, \end{aligned}$

Parametric mapping to approximate the solution of the PDE:

 $\mathcal{G}_{\theta} : a \mapsto z$ $\mathcal{G}(a) = (\mathcal{Q} \circ \mathcal{W}_L \circ \cdots \circ \mathcal{W}_1 \circ \mathcal{P})(a)$ Optimisation to solve :

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \|z_i - \mathcal{G}_{\theta}(a_i)\|_{\mathcal{Z}}^2$$

Learning semilinear Neural Operators: A unified recursive framework for prediction and Data Assimilation.

(a)

Challenges:

- Real world system irregular measurement data, noisy measurement etc.
- Vanilla NO doesn't maintain history or have a well motivated recurrent structure.
- NO drawbacks : error accumulation for long rollouts and sensitivity to noise in the data.
- NO is incapable of making use of future measurements.
- NO literature lacks a systematic framework for data assimilation.
- Infinite dimensional Kalman filters : estimate the state of a system governed by some underlying infinite-dimensional PDEs based on measurements.
- Kalman filters based observers requires tremendous computational resources, limiting their application to large-scale systems.
- In this paper we propose a general framework for data assimilation for NO by exploiting the structure of semilinear PDEs .

• We extend the NO theory by leveraging the observer design of semilinear PDEs.

• We break the observer solution into prediction and update steps.

• The resulting recurrent framework can estimate solutions using arbitrary amounts of time measurements.

Semilinear PDE system and observer design:

• System equation based on semilinear evolution:

$$\begin{aligned} \frac{\partial z(t)}{\partial t} &= Az(t) + G(z(t), t) + \omega(t) ,\\ z(0) &= z_0 ,\\ y(t) &= Cz(t) + \eta(t) . \end{aligned}$$

• Observer design:

$$\frac{\partial \hat{z}(t)}{\partial t} = A\hat{z}(t) + G(\hat{z}(t), t) + K(t) [y(t) - C\hat{z}(t)]$$
$$\hat{z}(t_k) = \underbrace{T(t_k - t_{k-1})\hat{z}(t_{k-1}) + \int_{t_{k-1}}^{t_k} T(t_k - s)G(\hat{z}(s), s)ds}_{\text{Prediction}} + \underbrace{\int_{t_{k-1}}^{t_k} T(t_k - s)K(s) [y(s) - C\hat{z}(s)]ds}_{\text{Correction}}$$

NODA framework:

• NODA prediction and update step,

$$\hat{z}_{t_k}^{\text{pred}} = \hat{z}_{t_{k-1}} + \mathcal{W}(\hat{z}_{t_{k-1}})$$

$$\hat{z}_{t_k} = \hat{z}_{t_k}^{\text{pred}} + K(\hat{z}_{t_k}^{\text{pred}}) \left[y(t_k) - E(\hat{z}_{t_k}^{\text{pred}}) \right]$$

- Prediction step
- Correction step

• Kalman gain,

$$K(\hat{z}_{t_k}^{\text{pred}})[u] = \tanh\left(W_z E(\hat{z}_{t_k}^{\text{pred}}) + W_y y(t_k) + b\right) \odot \left(\hat{C}^* u\right)$$

• Training loss :

$$\mathcal{J}(\phi) = \frac{1}{SN} \sum_{i=1}^{S} \sum_{k=1}^{N} \left\| \hat{z}_{t_{k}}^{(i)} - z_{D}^{(i)}(t_{k}) \right\|_{2} + \frac{\lambda}{SH} \sum_{i=1}^{S} \sum_{k=1}^{H} \left\| y^{(i)}(t_{k}) - E(\hat{z}_{t_{k}}^{(i)}) \right\|_{2}$$

Results:

Table 2: Averaged RelMSE (×10³) for prediction ($\alpha = 0\%$) on the Navier-Stokes equation as a function of the sequence length t_f and of the SNR.

		-	2						
SNR		20 dB			30 dB			∞	
t_f	500	750	1000	500	750	1000	500	750	1000
MNO	48 ± 7	72 ± 6	96 ± 12	39±4	51±7	87 ± 6	18±3	22 ± 3	26 ± 5
FNO	192 ± 10	294 ± 12	351 ± 14	189 ± 19	265 ± 21	317 ± 16	136 ± 11	177 ± 14	265 ± 16
MWNO	172 ± 10	226 ± 9	278 ± 11	147 ± 9	192 ± 9	240 ± 10	78 ± 5	104 ± 6	188 ± 11
C-LSTM	487 ± 15	522 ± 10	604 ± 18	397 ± 20	426 ± 17	481 ± 19	366 ± 11	417 ± 13	529±11
NODA	10 ±2	18 ±4	32 ± 6	8 ±1	13 ±2	26 ±4	7 ±1	8 ±1	13 ±2

Table 3: Averaged RelMSE ($\times 10^3$) of NODA for the Navier-Stokes equation as a function of α .

α	0%	10%	20%	30%
Averaged RelMSE	26±4	18 ± 4	13 ± 3	9 ± 3

Figure 1: Samples of a realization of a true trajectory of the Navier-Stokes equation for $t \in \{150, 300, 450\}$ (**Top Row**), and elementwise error plots for the corresponding predictions by NODA (**Bottom Row**).

Thank you for listening!

