A Lightweight Method for Tackling Unknown Participation Statistics in Federated Averaging

Shiqiang Wang¹, Mingyue Ji²

¹ IBM T. J. Watson Research Center, Yorktown Heights, NY, USA ² Department of ECE, University of Utah, Salt Lake City, UT, USA

Mathematical Formulation of Federated Learning

- A machine learning model with parameter x
- How good is x: Individual loss function for data sample ξ_n , $\ell_n(\mathbf{x}, \xi_n)$
- Local objective at client *n*:

$$F_n(\mathbf{x}) := \mathbb{E}_{\xi_n \sim \mathcal{D}_n} \left[\ell_n(\mathbf{x}, \xi_n) \right]$$

• Global objective (*not directly observable*):

$$f(\mathbf{x}) := \frac{1}{N} \sum_{n=1}^{N} F_n(\mathbf{x})$$

Find \mathbf{x}^* to minimize $f(\mathbf{x}) \rightarrow \text{Optimization problem}$

FedAvg Algorithm

	Participate					
Algorithm 1: FedAvg with pluggable aggregation weights	Client 2					
Input: γ , η , \mathbf{x}_0 , I ; Output: $\{\mathbf{x}_t : \forall t\}$; 1 Initialize $t_0 \leftarrow 0$, $\mathbf{u} \leftarrow 0$; 2 for $t = 0, \dots, T - 1$ do	Client 3					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Randomized participation with unknown statistics					
Local updates $\begin{pmatrix} 6 \\ 7 \\ 8 \\ 9 \end{pmatrix} = \begin{pmatrix} 0 \\ 7 \\ 1 \\ 7 \\ 7 \\ 1 \\ 7 \\ 1 \\ 1 \\ 7 \\ 1 \\ \mathbf$	<u>Challenge</u> : The participation statistics of clients are often <i>unknown</i> , <i>uncontrollable</i> , and <i>heterogeneous</i>					
$ \begin{array}{c c} 10 \\ 11 \\ 12 \end{array} \begin{array}{c} else \\ $	Aggregation weights					
Aggregation \longrightarrow 13 $[\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t + \frac{\eta}{N} \sum_{n=1}^{N} \omega_t^n \Delta_t^n;$						

Participate

Time

Client 1

Improper Choice of Aggregation Weights Causes Bias

Only assumed for theoretical analysis

Theorem 1 (Objective minimized at convergence, informal). When $\mathbb{I}_t^n \sim \text{Bernoulli}(p_n)$ and the weights are time-constant, i.e., $\omega_t^n = \omega_n$ but generally ω_n may not be equal to $\omega_{n'}$ ($n \neq n'$), with properly chosen learning rates γ and η and some other assumptions, Algorithm 1 minimizes the following objective:

$$h(\mathbf{x}) := \frac{1}{P} \sum_{n=1}^{N} \omega_n p_n F_n(\mathbf{x}),$$

where $P := \sum_{n=1}^{N} \omega_n p_n$.

Implicit weighting due to partial participation

• Choosing $\omega_n = 1/p_n$

- Objective is consistent with $f(\mathbf{x}) := \frac{1}{N} \sum_{n=1}^{N} F_n(\mathbf{x})$
- However, impractical when p_n is unknown
- Choosing other values of ω_n (e.g., $\omega_n = 1, \forall n$)
 - Objective inconsistency, leading to bias (preference of more frequently participating clients)

The **ideal** case: Choice of aggregation weight ω_n should *cancel out* the implicit weighting by p_n

How to Estimate Aggregation Weights?

Inspired by Bernoulli-distributed participation in Generalize to other participation patterns empirically

 $\omega_n = 1/\underline{p_n} \xrightarrow{\text{Estimate}} p_n \approx \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{I}_t^n$

Problem 1 (Goal of Weight Estimation, informal). Choose $\{\omega_t^n\}$ so that its long-term average (i.e., for large T) $\frac{1}{T} \sum_{t=0}^{T-1} \omega_t^n$ is close to $\frac{1}{\frac{1}{T} \sum_{t=0}^{T-1} \mathbf{I}_t^n}$, for each n. Geometric distribution for Equivalent to the average of intervals —> Bernoulli between every pair of adjacent participating participating rounds clients (same parameter p_n) Cannot predict the future \rightarrow Estimate ω_t^n based on intervals seen so far $S_{n}^{(1)}$ $S_{n}^{(2)}$ $S_n^{(3)} S_n^{(4)} S_n^{(5)}$ Solution Cutoff" Problem: Large overestimate of ω_t^n when large intervals exist interval (although with low probability) \rightarrow instability in training Create a dummy interval when the actual interval exceeds K • Smaller $K \rightarrow$ lower variance (more samples), but higher bias • Larger $K \rightarrow$ higher variance (less samples), but lower bias 5

FedAU

FedAvg with <u>a</u>daptive weighting to support <u>u</u>nknown participation statistics

Main Result

Theorem 2 (Convergence error w.r.t. (1)). Let $\gamma \leq \frac{1}{4\sqrt{15}LI}$ and $\gamma \eta \leq \min\left\{\frac{1}{4LI}; \frac{N}{54LIQ}\right\}$, where $Q := \max_{t \in \{0,...,T-1\}} \frac{1}{N} \sum_{n=1}^{N} p_n(\omega_t^n)^2$. When Assumptions 1–5 hold, the result $\{\mathbf{x}_t\}$ obtained from Algorithm 1 satisfies: Defined in the paper $\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\left[\|\nabla f(\mathbf{x}_t)\|^2 \right]$ Weight error term $\leq \mathcal{O}\left(\frac{\mathcal{F}}{\gamma \eta IT} + \left|\frac{\Psi_G + \delta^2 + \gamma^2 L^2 I \sigma^2}{NT} \sum_{t=1}^{T-1} \sum_{t=1}^{N} \mathbb{E}\left[\left(p_n \omega_t^n - 1\right)^2\right] + \frac{\gamma \eta L Q \left(I \delta^2 + \sigma^2\right)}{N} + \gamma^2 L^2 I \left(I \delta^2 + \sigma^2\right)\right),$ where $\mathcal{F} := f(\mathbf{x}_0) - f^*$, and $f^* := \min_{\mathbf{x}} f(\mathbf{x})$ is the truly minimum value of the objective in (1). **Theorem 3** (Bounding the weight error term). For $\{\omega_t^n\}$ obtained from Algorithm 2, when $T \ge 2$, $\frac{1}{NT}\sum_{i=1}^{T-1}\sum_{i=1}^{N}\mathbb{E}\left[\left(p_{n}\omega_{t}^{n}-1\right)^{2}\right] \leq \mathcal{O}\left(\left|\frac{K\log T}{T}\right|+\left|\frac{1}{N}\sum_{i=1}^{N}(1-p_{n})^{2K}\right|\right).$ Related to variance Related to bias

Confirms the bias-variance tradeoff:

- Small $K \rightarrow$ low variance, high bias
- Large $K \rightarrow$ high variance, low bias

Final Convergence Rate

Corollary 4 (Convergence of FedAU). Let $K = \lceil \log_c T \rceil$ with $c := \frac{1}{(1 - \min_n p_n)^2}$, $\gamma = \min\left\{\frac{1}{LI\sqrt{T}}; \frac{1}{4\sqrt{15LI}}\right\}$, and choose η such that $\gamma\eta = \min\left\{\sqrt{\frac{FN}{Q(I\delta^2 + \sigma^2)LIT}}; \frac{1}{4LI}; \frac{N}{54LIQ}\right\}$. When $T \ge 2$, the result $\{\mathbf{x}_t\}$ obtained from Algorithm 1 that uses $\{\omega_t^n\}$ obtained from Algorithm 2 satisfies $\frac{1}{T}\sum_{t=0}^{T-1} \mathbb{E}\left[\|\nabla f(\mathbf{x}_t)\|^2\right]$ Upper bound of weight error term Standard in FedAvg $\le \mathcal{O}\left(\frac{\sigma\sqrt{LFQ}}{\sqrt{NIT}} + \frac{\delta\sqrt{LFQ}}{\sqrt{NT}}\right) + \frac{\left(\Psi_G + \delta^2 + \frac{\sigma^2}{IT}\right)R\log^2 T}{T} + \frac{\left(LF\left(1 + \frac{Q}{N}\right) + \delta^2 + \frac{\sigma^2}{I}\right)}{T}\right),$

where Q and Ψ_G are defined in Theorem 2 and $R := 1/\log c$.

Experiments

	Participation	Dataset	SVHN		CIFAR-10		CIFAR-100		CINIC-10	
	pattern	Method / Metric	Train	Test	Train	Test	Train	Test	Train	Test
Participation 0	Bernoulli (time-independent)	FedAU (ours, $K \to \infty$)	90.4±0.5	89.3±0.5	85.4±0.4	77.1±0.4	63.4±0.6	52.3±0.4	65.2 ± 0.5	61.5 ± 0.4
		FedAU (ours, $K = 50$)	90.6±0.4	89.6±0.4	86.0±0.5	77.3±0.3	63.8±0.3	52.1 ± 0.6	66.7±0.3	62.7±0.2
		Average participating	89.1±0.3	87.2 ± 0.3	83.5 ± 0.9	74.1 ± 0.8	59.3±0.4	48.8 ± 0.7	61.1 ± 2.3	56.6 ± 2.0
		Average all	88.5 ± 0.5	87.0±0.3	81.0 ± 0.9	72.7±0.9	58.2 ± 0.4	47.9 ± 0.5	60.5 ± 2.3	56.2 ± 2.0
		FedVarp ($250 \times$ memory)	89.6±0.5	88.9 ± 0.5	84.2 ± 0.3	77.9 ± 0.2	57.2 ± 0.9	49.2 ± 0.8	64.4 ± 0.6	62.0 ± 0.5
		MIFA (250 \times memory)	89.4±0.3	88.7±0.2	83.5 ± 0.6	77.5 ± 0.3	55.8±1.1	48.4 ± 0.7	63.8 ± 0.7	61.5 ± 0.5
		Known participation statistics	89.2±0.5	88.4 ± 0.5	<u>84.3</u> ±0.5	77.0±0.5	<u>59.4±0.7</u>	50.6±0.4	63.2 ± 0.6	60.5 ± 0.5
ation	Markovian Markovian 0 100 200 300 400 Number of training rounds	FedAU (ours, $K \to \infty$)	90.5±0.4	89.3±0.4	85.3±0.3	77.1±0.3	63.2 ± 0.5	51.8±0.3	64.9 ± 0.3	61.2 ± 0.2
		FedAU (ours, $K = 50$)	90.6±0.3	89.5±0.3	85.9±0.5	77.2±0.3	63.5±0.4	51.7 ± 0.3	66.3±0.4	62.3±0.2
		Average participating	89.0±0.3	87.1±0.2	83.4±0.9	74.2 ± 0.7	59.2 ± 0.4	48.6 ± 0.4	61.5 ± 2.3	56.9±1.9
Inticip		Average all	88.4±0.6	86.8±0.7	80.8 ± 1.0	72.5 ± 0.5	57.8±0.9	47.7 ± 0.5	59.9±2.8	55.7±2.2
e 0		FedVarp ($250 \times$ memory)	89.6±0.3	88.6 ± 0.2	84.0 ± 0.3	77.8 ± 0.2	56.4±1.1	48.8 ± 0.5	64.6 ± 0.4	62.1 ± 0.4
		MIFA (250 \times memory)	89.1±0.3	88.4±0.2	83.0 ± 0.4	77.2 ± 0.4	55.1±1.2	48.1 ± 0.6	63.5 ± 0.7	61.2 ± 0.6
		Known participation statistics	89.5 ± 0.2	88.6±0.2	84.5 ± 0.4	76.9 ± 0.3	<u>59.7±0.5</u>	50.3 ± 0.5	63.5 ± 0.9	60.7 ± 0.6
Participation 0	Cyclic Cyclic Cyclic FedAu FedAu Aver 100 200 300 400 Number of training rounds Known p	FedAU (ours, $K \to \infty$)	89.8±0.6	88.7±0.6	84.2±0.8	76.3±0.7	60.9±0.6	50.6±0.3	63.5 ± 1.0	60.0 ± 0.8
		FedAU (ours, $K = 50$)	89.9±0.6	88.8±0.6	84.8±0.6	76.6±0.4	61.3 ± 0.8	51.0±0.5	64.5±0.9	60.9±0.7
		Average participating	87.4±0.5	85.5±0.7	81.6±1.2	73.3 ± 0.8	58.1±1.0	48.3 ± 0.8	58.9±2.1	55.0±1.6
		Average all	89.1±0.8	87.4±0.8	83.1±1.0	73.8 ± 0.8	59.7 ± 0.3	48.8 ± 0.4	62.9±1.7	57.6±1.5
		FedVarp ($250 \times$ memory)	84.8±0.5	83.9 ± 0.6	79.7 ± 0.9	75.3 ± 0.7	50.9 ± 0.5	45.9 ± 0.4	60.4 ± 0.7	58.5 ± 0.6
		MIFA (250 \times memory)	78.6±1.2	77.4 ± 1.1	73.0±1.3	70.6 ± 1.1	44.8 ± 0.6	41.1 ± 0.6	51.2 ± 1.0	50.2 ± 0.9
		Known participation statistics	89.9±0.7	88.7±0.6	83.6±0.7	76.1±0.5	60.2 ± 0.4	50.8 ± 0.4	62.6±0.8	59.8±0.7

- Same stationary probability for all participation patterns (but different across clients), initial state/offset is randomized
- Participation rate is correlated with heterogeneous data distribution

Thank You!

Email: <u>wangshiq@us.ibm.com</u> Homepage: <u>https://shiqiang.wang/</u>