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Mathematical Formulation of Federated Learning

§ A machine learning model with parameter 𝐱 
§ How good is 𝐱: Individual loss function for data sample 𝜉!, ℓ! 𝐱, 𝜉!
§ Local objective at client n:

§ Global objective (not directly observable):

Find 𝐱∗ to minimize 𝑓 𝐱  à Optimization problem
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FedAvg Algorithm

Randomized participation with 
unknown statistics

Aggregation weights
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Challenge: The participation 
statistics of clients are often 
unknown, uncontrollable, and 
heterogeneous
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Improper Choice of Aggregation Weights Causes Bias

§ Choosing 𝜔! = ⁄" #!
– Objective is consistent with
– However, impractical when 𝑝! is unknown

§ Choosing other values of 𝜔! (e.g., 𝜔! = 1, ∀𝑛)
– Objective inconsistency, leading to bias (preference of more frequently participating 

clients)

Only assumed for theoretical analysis

Implicit weighting due to partial participation

The ideal case:
Choice of aggregation weight 𝜔" should 
cancel out the implicit weighting by 𝑝"
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How to Estimate Aggregation Weights?
Inspired by Bernoulli-distributed participation Generalize to other participation patterns empirically

Estimate
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Equivalent to the average of intervals 
between every pair of adjacent 
participating rounds

Geometric 
distribution for 
Bernoulli 
participating 
clients (same 
parameter 𝑝")

Cannot predict the future
è Estimate 𝜔!" based on intervals seen so far

Problem: Large overestimate of 𝜔!" when large intervals exist 
(although with low probability) è instability in training
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Solution: 
“Cutoff” 
interval

𝐾
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Create a dummy interval when the actual interval exceeds 𝐾
• Smaller 𝐾 à lower variance (more samples), but higher bias
• Larger 𝐾 à higher variance (less samples), but lower bias
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FedAU
§ FedAvg with adaptive weighting to support unknown participation statistics

Online interval 
computation and 
averaging

Cutoff condition of interval length
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Main Result

Weight error term

Related to variance Related to bias
Confirms the bias-variance tradeoff:
• Small 𝐾 à low variance, high bias
• Large 𝐾 à high variance, low bias
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Defined in the paper



Final Convergence Rate

Upper bound of weight error term Standard in FedAvg
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Experiments

• Same stationary probability for all participation patterns (but different across clients), initial state/offset is randomized
• Participation rate is correlated with heterogeneous data distribution9



Thank You!

Email: wangshiq@us.ibm.com 
Homepage: https://shiqiang.wang/ 
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