Improving Intrinsic Exploration by Creating Stationary Objectives

Roger Creus Castanyer

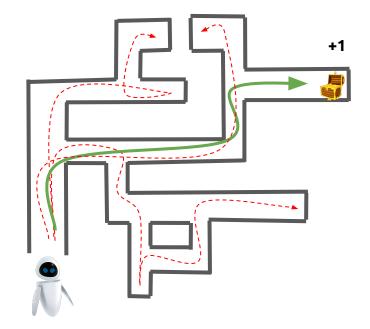
Glen Berseth

Intrinsic Objectives improve Exploration

In hard-exploration problems, exploration is more successful if **directed**, **controlled**, and **efficient**.

Can be achieved by **augmenting the original RL problem**

$$y_t = \mathcal{R}_t + \lambda \mathcal{B}(s_t, a_t) + \gamma \max_{a'} Q_{\theta'}(s_{t+1}, a')$$



Many Intrinsic Objectives for Exploration

Count-based bonuses

Compute the state-visitation frequencies

$$\mathcal{B}(s_t, a_t, s_{t+1} | \phi_t) = \frac{\beta}{\sqrt{\mathcal{N}_t(s_{t+1})}}$$

Pseudo-counts [1]

Estimate the state-visitation frequencies

$$\mathcal{B}(s_t, a_t, s_{t+1} | \phi_t) = \psi_t(s_{t+1})^T C_t^{-1} \psi_t(s_{t+1})$$
$$C_t = \sum_{t=0}^T \psi_t(s_t) \psi_t(s_t)^T$$

State-Entropy Maximization [2]

Induce a MaxEnt distribution over the state-visitation distribution

$$\sum_{t=0}^{T} \mathcal{H}(s_t) = \sum_{t=0}^{T} -\mathbf{E}_{s_t \sim d^{\pi_{\theta}}(s_t)} \left[\log d^{\pi_{\theta}}(s_t) \right] \le \sum_{t=0}^{T} \mathbf{E}_{s_t \sim d^{\pi_{\theta}}(s_t)} \left[-\log p_{\phi_{t-1}}(s_t) \right]$$

 $\mathcal{B}(s_t, a_t, s_{t+1} | \phi_t) = -\log p_{\phi_t}(s_{t+1})$

 \rightarrow We introduce the parameters ϕ_t to understand the properties of the intrinsic reward distributions

 \rightarrow If ϕ_t changes over time, then $\mathcal{B}(s_t, a_t, s_{t+1} | \phi_t)$ is non-stationary.

 \rightarrow Non-stationary rewards transform an MDP into a POMDP:

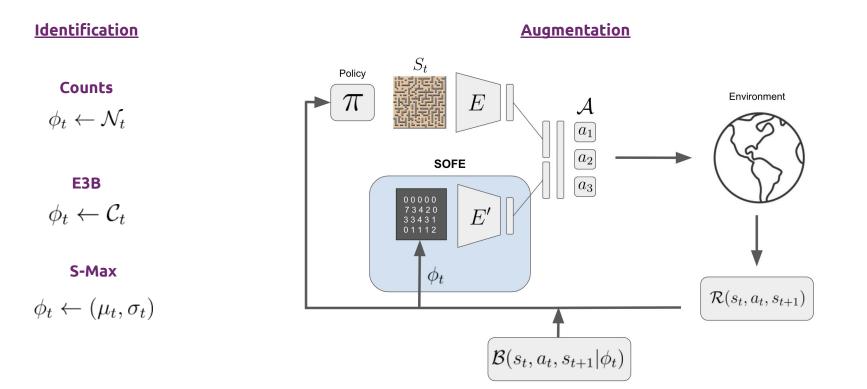
- Require non-Markovian properties (e.g. memory)
- No convergence guarantees

[1] Henaff, Mikael, et al. "Exploration via elliptical episodic bonuses." Advances in Neural Information Processing Systems 35 (2022): 37631-37646.
[2] Berseth, Glen, et al. "SMiRL: Surprise minimizing RL in dynamic environments." *arXiv preprint arXiv:1912.05510* (2019).

SOFE: Stationary Objectives For Exploration

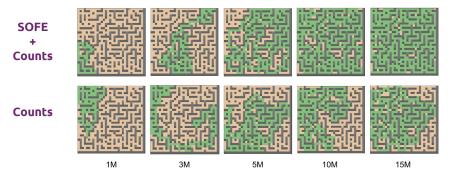
Non-stationary rewards become a deterministic function of the augmented states

The original exploration objective remains the same



SOFE: Results

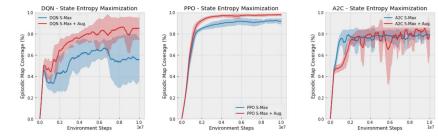
SOFE allows the agents **better explore** the state space



SOFE allows the agents **better solve** sparse-reward tasks

Algorithm	DeepSea 10	DeepSea 14	DeepSea 20	DeepSea 24	DeepSea 30
DeRL-A2C	0.98 ± 0.10	0.65 ± 0.23	0.42 ± 0.16	0.07 ± 0.10	0.09 ± 0.08
DeRL-PPO	0.61 ± 0.20	0.92 ± 0.18	-0.01 ± 0.01	0.63 ± 0.27	-0.01 ± 0.01
DeRL-DQN	$\textbf{0.98} \pm \textbf{0.09}$	$\textbf{0.95} \pm \textbf{0.17}$	0.40 ± 0.08	0.53 ± 0.27	0.10 ± 0.10
SOFE-A2C	0.94 ± 0.19	0.45 ± 0.31	0.11 ± 0.25	0.08 ± 0.14	0.04 ± 0.09
SOFE-PPO	0.77 ± 0.29	0.67 ± 0.33	0.13 ± 0.09	0.07 ± 0.15	0.09 ± 0.23
SOFE-DQN	0.97 ± 0.29	0.78 ± 0.21	$\textbf{0.70} \pm \textbf{0.28}$	$\textbf{0.65} \pm \textbf{0.26}$	$\textbf{0.42} \pm \textbf{0.33}$

SOFE provides orthogonal gains to several exploration objectives

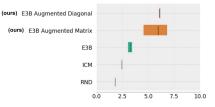


State-Entropy Maximization

Pseudo-counts

(ours) E3B Augmented Diagonal (ours) E3B Augmented Matrix E3B ICM RND -0.6 0.0 0.6

Procgen - Maze - IQM



Mean Episode Return

SOFE: Conclusion

Make your agent's life easier with **SOFE**

