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Can be achieved by augmenting the original RL problem 

Intrinsic Objectives improve Exploration

In hard-exploration problems, exploration is more successful if directed, controlled, and efficient.
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Pseudo-counts [1]

Estimate the state-visitation frequencies 

Count-based bonuses State-Entropy Maximization [2]

Compute the state-visitation frequencies Induce a MaxEnt distribution over the state-visitation distribution 

Many Intrinsic Objectives for Exploration
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→ We introduce the parameters       to understand the properties 
of the intrinsic reward distributions

→ If         changes over time, then                                 is non-stationary.

→ Non-stationary rewards transform an MDP into a POMDP:
○ Require non-Markovian properties (e.g. memory)
○ No convergence guarantees



SOFE: Stationary Objectives For Exploration
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Non-stationary rewards become a deterministic function of the augmented states

The original exploration objective remains the same



SOFE: Results

SOFE allows the agents better explore the state space
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Pseudo-countsSOFE allows the agents better solve sparse-reward tasks

SOFE provides orthogonal gains to several exploration objectives



SOFE: Conclusion

Make your agent’s life easier with SOFE


