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Role of Exploration In KL

Exploration is a significant topic in online Reinforcement Learning (RL)

~ RL: an agent takes a sequence of actions in an environment in order to maximize cumulative rewards
~ Online RL: an agent actively an environment to learn a (near)-optimal policy

A=

r~N(1,1)

Figure 1: a typical hard-to-explore environment called River Swim Random eXplOratiOn has a prObablllty of @(1/2]\]) to visit state SN
- Naive exploration can easily fal Leading to a poor coverage of the online dataset

~ In a River Swim environment (Figure 1) with two actions and NV states

- Agent starts from s,

~ Dashed lines: the transitions resulted from action 1
© @Grey lines: the transitions resulted from action 2

- Higher expected reward at state sy,




Strategic Exploration Design

Previous provable sample-efficient online algorithm requires strategic exploration design

o Strategic exploration design of the environment
~ UCB (Upper Confidence Bound):
~ Construct a high of the uncertain parameters

~ Explore with the policy that is the most optimistic in the confidence set

© Issues:
© They either heavily rely on tabular and linear MDP assumptions
~ Or they require intractable computational oracle (e.g., non-convex optimization)
© For example, GOLF (Jin et al. 2021) approximate value function (function that predicts potential cumulative rewards) with

general function class & (deep RL)

~ Step 1: find the set of functions with low error: F' = {f € F : f has low empirical Bellman error}

. Step 2: maximize the function in this set: ) = arg max f(s;, z(s; | 1))
feF’

[1] Jin, Chi, Qinghua Liu, and Sobhan Miryoosefi. "Bellman eluder dimension: New rich classes of rl problems, and sample-efficient algorithms." Advances in neural information processing systems 34 (2021): 13406-13418.
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—xploration In Practice

> UCB is hard to implement in Deep RL
~ Non-convex optimization are intractable in general
~ Naive exploration:

~ €-greedy: explore randomly with a probabillity €

~ Boltzmann exploration: draws actions from a Boltzmann distribution over the “advantage function” of action
~ Heuristic exploration:

© Uncertainty-oriented: measure the uncertainty of the value function [1]

© Intrinsic motivation-oriented: set intrinsic reward the inverse proportion to the visit counts [2]

[1] Dearden, Richard, Nir Friedman, and Stuart Russell. "Bayesian Q-learning." Aaai/iaai 1998 (1998): 761-768.
[2] Tang, Haoran, et al. "# exploration: A study of count-based exploration for deep reinforcement learning." Advances in neural information processing systems 30 (2017).
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A Gap Between Theory and Practice

e-greedy, despite being sample-inefficient in the worst-case, performs well in a wide range of applications:
© Atari games control (reaches human level) [1]
~ Robotic control [2]

Many real-world RL problems are multi-task RL (MTRL) problems:
. B i Z’g\ 48

i
—

Fetch and Push [1] Fetch and Place Fetch and Slide

In many multitask RL algorithms, exploration across tasks
~ For example, Andrychowicz et al. (2017) [3] shares the explored trajectories across tasks by relabeling the rewards

Does policy sharing in MTRL benefit exploration by
allowing e-greedy to be sample efficient in the worst case?

[1] Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." nature 518.7540 (2015): 529-533.
[2] Kalashnikov, Dmitry, et al. "Scalable deep reinforcement learning for vision-based robotic manipulation." Conference on Robot Learning. PMLR, 2018.
[3] Andrychowicz, Marcin, et al. "Hindsight experience replay." Advances in neural information processing systems 30 (2017).
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A Motivating example

Recall the River Swim environment

N + 1 States
| A |
N + 1 States § M,
[ A | ”
a M,
=
Single task: e-greedy visits
goal state with a prob. € _ My
- Single-task: e-greedy requires many episodes to visit the target state
© Diverse multi-task (right panel) . To see this

© Iftask 1 € |N] knows its optimal policy ﬂi*, then state i can be reached with a hig

N probabllity

© The target state of task i + 1, can be reached with probability € with Jrl.* + €-greec

~ We have sufficient exploration for task i + 1
~ Diversity (or richness) of the task set plays an important role here

y



Problem Formulation

MDP (Markov Decision Process) formulation

)

Episodic MDP M = (&, A, H, Py, Ry,)

- & state space; & action space; H € N horizon length

© Py = (Papdnerm @nd Ry, = (Ry, 30 ner are transition and reward functions
Agent interacts with the environment:

~ Ateach step h € [H], the agent chooses an action A, € &

~ The environment samples the next state S, | ~ Py, (- | §3, Ap) and R, = Ry, 3/(S,,, A)

An episode is a sequence (81, A, Ry - Sgp Ay Ry Sy 1)
H

Goal: maximize the cumulative reward Z R;, by optimizing action sequence
h=1




Problem Formulation

~ Policy: the agent chooses actions based on Markovian policies
- = (m,)e[g @nd each , is a mapping from state to a distribution over &/

- Let Il denote the space of all such policies
~ Value function:

K
S
s
=
N\
| —
[
S Ig

I’h+ h_l_lM(Sh_l_l)‘Sh:S,ah:a]

M
mS) = 7 Ql]zZ,M (Sh’ ah) | 55 = S]
~ General value function approximation:

~ The algorithm has access to a function class # = (F )crgeqy BEach F ), 0 S X A > R

-~ Each & is used to approximate the optimal value function Qh Iy

~ We assume Bellman completeness [1] that ensures the richness of &

[1] Jin, Chi, Qinghua Liu, and Sobhan Miryoosefi. "Bellman eluder dimension: New rich classes of rl problems, and sample-efficient algorithms." Advances in neural information processing systems 34 (2021): 13406-13418.
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Proposed Generic Algorithm

Multitask learning scenario

-~ Algorithm interacts with a set of tasks  sequentially for T rounds

~ At the each round ¢, the algorithm chooses an M € . and an exploratory policy, which is used to collect one episode on M
~ At the end of T rounds, the algorithm outputs a set of policies {7y, } 1< 4-

~ Goal: learn a near-optimal policy r,, for each task M € M

Algorithm 1 Generic Algorithm for MTRL with Policy-Sharing

1: Imput: function class F = F; X --- X Fg41, task set M
2: Initialize Dy ps < () for all M € M

Additional notations

3: forroundt =1,2,...,|T/|M|] do © @: an offline learning oracle that outputs a value function

4:  Offline learning oracle outputs f; 5 < Q(Ds—_1 ar) for each M given a dataset

5: Set myopic exploration policy 7y a7 < expl(7w/t:) for each M < expl(m): e-greedy exploration with greedy policy &

6: Set m; MlXtUI‘e({Wt,M}MeM) 2 POlle mixture:

7: for M € M do | - N | N

8: Sample one episode 7 5y on MDP M with policy 7 - Given a set of policies {”i}izl, I\/I|xture({7r,-}i=1) randomly

9: Add 7, to the dataset: Dy ps <= Dy—1,m U {T¢,0m} draw an index i, then run policy 7; for the whole episode
10: end for
11: end for

12: Return 7, = Mixture({frt,M}tetT”MH) for each M




VWhen Does e-greedy In Single Task \Work™?

Dann et al. (2022) [1] proposed myopic exploration gap (MEG)

For the ease of presentation, we keep our discussion within tabular MDPs (finite state and action space)

- For the tabular case, myopic exploration gap a(x) of policy & is the value of
1 :
sup — (VI (s1) = Vi (51) ) st
rell’,c>1 C
(s, a)
expl(r)
/’th (Sa a)

© Here u, (s, a) = Pr(S, = s,A;, = a) is called the

<c forals,a,h

- Intuition: out of all policies that are sufficiently covered by 7, there exists one policy &’ that makes significant value improvement
~ Dann et al. (2022) showed that

- if a(7r) is lower bounded for all f-suboptimal policies,
© then Algorithm 1 (single-task case) has sample-complexity bound that is polynomial in all parameters

[1] Dann, Chris, et al. "Guarantees for epsilon-greedy reinforcement learning with function approximation.” International Conference on Machine Learning. PMLR, 2022.
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—xtending to M1TRL

We need large MEG to hold for at least one task

Definition 1 (Multitask MEG). Let 7 € 11 % he a joint policy and 7, is the component for task M. We say
that 7z has a(x, ) multitask myopic exploration gap, where a(x, ) is the value to:

1 :
up — (Vi (1) = V7 (1) ) st

rell’,c>1 C

Ui (s, a)

|
uih (s, a)

<c forals,a,h

For a joint policy, let

The current exploration policy expl(z) can significantly improve ,, for at least one task M.

We want this to happen whenever some x,, is f suboptimal.




Comparing MG and Multitask MEG

There can be an exponential gap between Single-task MEG and Multitask MEG

“ Forallz € IT# |, we have a(x, M) > a(my, {M})\/ M foral M € U

“ For a goal-orientated environment (sparse reward on a goal (s, hg)): a(m, {M}) < \/ PfeXpl(ﬂ)(Shg — Sg)

> When the initial state and the goal state are far, PreXpl(”)(Shg = Sg) can be exponentially small
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Grid-world with small MEG

Grid-world with large Multitask MEG




sample Complexity Guarantee

A definition of diverse task set

Definition 2 (Multitask Suboptimality). Hﬂ C (1) 4 s the p-suboptimal policy class, such

that for any € 11, there exists ), that is ff-suboptimal for MDP M, i.e.
Vf M S MaX ep f,M —p

Definition 3 (Diverse Tasks). For some function @ : [0,1] — R, a tasks set is a-diverse if any
7 € 115 has multitask myopic exploration gap a(x, #) = a(f) for any constant f > 0

Theorem 1 (Upper Bound for Sample Complexity). If ./ is -diverse, Algorithm 1 with €
-greedy exploration function has a sample-complexity

C(B,6) =0

Sample complexity: with €' (f, 6) total number of episodes, Algorithm 1 outputs a -optimal
policy for each M with a probability at least 1 — 0.




—xamples of Diverse lasks

Tabular case
- Diverse task: for each (s, h) € & X |H], there exists M j, € M, such that Ry, y, (s") = l[s" = s, h" = h]
)

~ Note that this construction is also used for the reward-free exploration under the tabular MDP setting

© Multitask MEG lower bound: a(z, #) = Q(B*/( o M H))
Linear MDP

- Definition: there exists a feature mapping ¢, : & X o +— R¢ such that P,(s" | s,a) = (¢, (s,a),v,(s")), for some measure
vy over & and Ry, (s, a) = (¢(s, a), 8,) for 0, € R4

© Diverse task: for any h € [H], there exists a subset £ C M, such that for all M € M, 0, v = O with i’ # h and

© Multitask MEG lower bound: a(z, ) = Q(p*c/( o M H))




mplications of Diversity in Deep RL

Motivations

© Deep RL: a pre-trained feature extractor generates embeddings for Q-value function followed by a linear mapping
~ This manner is similar to the setup in linear MDPs

- Diversity for Linear MDPs requires a full rank covariance matrix of th(sh, ah) at each h if the optimal policy is executed.

- We conduct simple simulation studies on a robotic control environment, to verity that whether a
of the embeddings would lead to better sample efficiency

Experiment setup
- Environment: environment [1]

~ The walker has controllable motors with torque

> The objective of the agent is to move forward, while crossing stumps with varying heights at regular intervals

- Task Mp,q: p and g denote the heights of the stumps and the spacings between the stumps

2D PCG-encoding
task space
e [stump spacing, stump height]

(a) BipedalWalker environment

[1] Portelas, Rémy, et al. "Teacher algorithms for curriculum learning of deep rl in continuously parameterized environments." Conference on Robot Learning. PMLR, 2020.

QO



Boxplot of Log Scaled Eigenvalues for Different Heights
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~ Train PPO (Proximal Policy Optimization Algorithms) [1] agent on 100 tasks with different (b) Controlling heights
parameter VeCtorS (p9 Q) - Boxplot of Log Scaled Eigenvalues for Different Spacings
© Evaluate ¢(s, a) € R3™ at the end of the training generated by near-optimal policies 7 i | T |
- KV = EMay? r i
~ Compute the covariance matrix V, , =, 3. ¢(s;,, a)P(sy, a) T # # ¥ T
~ We observe that the on the spectrum I |
compared to spacing ¢ ((b) and (c)) I I

0.0 0.6 13 2.0 2.6 3.3 4.0 4.6 5.3 6.0
Spacing

-~ Tasks with p € [1.0,2.3] leads to better diversity (c) Controlling spacings

Step 5000000 Step 10250000

Coincidence with automatic curriculum learning (ACL) task selection 5

- ALP-GMM [2], a well-established ACL algorithm, for BipedalWalker environment 4

~ Figure (d) gives the density plots of the ACL task sampler during the training process

- It shows a significant preference over heights p in the middle range, with little preference
over spacing ¢

(d) Preference of automatic CL

[1] Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).
[2] Portelas, Rémy, et al. "Teacher algorithms for curriculum learning of deep rl in continuously parameterized environments." Conference on Robot Learning. PMLR, 2020.
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(5eneralization Performance

Training on different parameters

- We train the same agent with different means of the stump heights p, then fine tune them on all tasks
~ Evaluation: the number of tasks the agent masters in the end of training

< Algorithm trained on tasks with stump heights in the middles masters significantly more tasks

Obstacle spacing | Stump height | Mastered task
2,4 0.0, 0.3 28.1 £6.1
2,4 1.3, 1.6 41.6 == 9.8
2,4 2.6, 3.0 11.5 £ 10.9
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