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RL: an agent takes a sequence of actions in an environment in order to maximize cumulative rewards 
Online RL: an agent actively explores an unknown environment to learn a (near)-optimal policy 

 
Naive exploration can easily fail 

In a River Swim environment (Figure 1) with two actions and  states 
Agent starts from  
Dashed lines: the transitions resulted from action 1 
Grey lines: the transitions resulted from action 2 
Higher expected reward at state 

Figure 1: a typical hard-to-explore environment called River Swim
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Exploration is a significant topic in online Reinforcement Learning (RL)

Role of Exploration in RL
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Random exploration has a probability of  to visit state  
Leading to a poor coverage of the online dataset

𝒪(1/2N) sN
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Strategic exploration design accounts for the uncertainty of the environment 
UCB (Upper Confidence Bound):  

Construct a high confidence set of the uncertain parameters 
Explore with the policy that is the most optimistic in the confidence set 

Issues: 
They either heavily rely on tabular and linear MDP assumptions 
Or they require intractable computational oracle (e.g., non-convex optimization) 

For example, GOLF (Jin et al. 2021) approximate value function (function that predicts potential cumulative rewards) with 
general function class  (deep RL) 
Step 1: find the set of functions with low error:  

Step 2: maximize the function in this set:  

ℱ
ℱt = {f ∈ ℱ : f has low empirical Bellman error}

f (t) = arg max
f∈ℱt

f(s1, π(s1 ∣ f ))

Previous provable sample-efficient online algorithm requires strategic exploration design

Strategic Exploration Design
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UCB is hard to implement in Deep RL 
Non-convex optimization are intractable in general 

Naive exploration: 
-greedy: explore randomly with a probability  

Boltzmann exploration: draws actions from a Boltzmann distribution over the “advantage function” of action 
Heuristic exploration: 

Uncertainty-oriented: measure the uncertainty of the value function [1] 
Intrinsic motivation-oriented: set intrinsic reward the inverse proportion to the visit counts [2]

ϵ ϵ

Exploration in Practice
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-greedy, despite being sample-inefficient in the worst-case, performs well in a wide range of applications: 
Atari games control (reaches human level) [1] 
Robotic control [2] 

Many real-world RL problems are multi-task RL (MTRL) problems: 

     
In many multitask RL algorithms, exploration policies are (implicitly) shared across tasks 

For example, Andrychowicz et al. (2017) [3] shares the explored trajectories across tasks by relabeling the rewards

ϵ

Fetch and Push [1] Fetch and Place Fetch and Slide

A Gap Between Theory and Practice
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Does policy sharing in MTRL benefit exploration by 
allowing -greedy to be sample efficient in the worst case?ϵ
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Single-task: -greedy requires  many episodes to visit the target state 
Diverse multi-task (right panel) is sample-efficient. To see this 

If task  knows its optimal policy , then state  can be reached with a high probability  

The target state of task , can be reached with probability  with  + -greedy 

We have sufficient exploration for task   
Diversity (or richness) of the task set plays an important role here
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Recall the River Swim environment

A Motivating Example
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Episodic MDP  
: state space;  action space;  horizon length 

 and  are transition and reward functions 
Agent interacts with the environment: 

At each step , the agent chooses an action  

The environment samples the next state  and  

An episode is a sequence   

Goal: maximize the cumulative reward  by optimizing action sequence

M = (𝒮, 𝒜, H, PM, RM)
𝒮 𝒜 H ∈ ℕ
PM = (Ph,M)h∈[H] RM = (Rh,M)h∈[H]

h ∈ [H] Ah ∈ 𝒜
Sh+1 ∼ Ph,M( ⋅ ∣ Sh, Ah) Rh = Rh,M(Sh, Ah)

(S1, A1, R1, …, SH, Ah, RH, SH+1)
H

∑
h=1

Rh

MDP (Markov Decision Process) formulation

Problem Formulation
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Policy: the agent chooses actions based on Markovian policies 
 and each  is a mapping from state to a distribution over  

Let  denote the space of all such policies 
Value function: 

 

General value function approximation: 
The algorithm has access to a function class . Each  

Each  is used to approximate the optimal value function  

We assume Bellman completeness [1] that ensures the richness of  

π = (πh)h∈[H] πh 𝒜
Π

Qπ
h,M(s, a) = 𝔼M

π [rh + Vπ
h+1,M (sh+1) ∣ sh = s, ah = a]

Vπ
h,M(s) = 𝔼M

π [Qπ
h,M (sh, ah) ∣ sh = s]

ℱ = (ℱh)h∈[H+1] ℱh : 𝒮 × 𝒜 ↦ ℝ
ℱh Q⋆

h,M

ℱ

Problem Formulation
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Algorithm interacts with a set of tasks  sequentially for  rounds  
At the each round , the algorithm chooses an  and an exploratory policy, which is used to collect one episode on  
At the end of  rounds, the algorithm outputs a set of policies .  
Goal: learn a near-optimal policy  for each task 

ℳ T
t M ∈ ℳ M

T {πM}M∈ℳ
πM M ∈ ℳ

Multitask learning scenario

Proposed Generic Algorithm
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Additional notations 
: an offline learning oracle that outputs a value function 

given a dataset 
expl( ): -greedy exploration with greedy policy  
Policy mixture:  

Given a set of policies , Mixture( ) randomly 
draw an index , then run policy  for the whole episode

𝒬

π ϵ π

{πi}N
i=1 {πi}N

i=1
i πi
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For the ease of presentation, we keep our discussion within tabular MDPs (finite state and action space) 
For the tabular case, myopic exploration gap  of policy  is the value of 

 s.t. 

, for all  

Here  is called the occupancy measure 

Intuition: out of all policies that are sufficiently covered by , there exists one policy  that makes significant value improvement 
Dann et al. (2022) showed that  

if  is lower bounded for all -suboptimal policies,  
then Algorithm 1 (single-task case) has sample-complexity bound that is polynomial in all parameters

α(π) π

sup
π′ ∈Π′ ,c≥1

1

c (Vπ′ 

1 (s1) − Vπ
1 (s1))

μπ′ 

h (s, a)
μexpl(π)

h (s, a)
≤ c s, a, h

μπ
h (s, a) = Prπ(Sh = s, Ah = a)

π π′ 

α(π) β

Dann et al. (2022) [1] proposed myopic exploration gap (MEG)

When Does -greedy in Single Task Work?ϵ
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Single-policy Concentrability 
/ Density Ratio for covariate shift

[1] Dann, Chris, et al. "Guarantees for epsilon-greedy reinforcement learning with function approximation." International Conference on Machine Learning. PMLR, 2022.



><

Definition 1 (Multitask MEG). Let  be a joint policy and  is the component for task . We say 
that  has  multitask myopic exploration gap, where  is the value to: 

 s.t. 

, for all  

For a joint policy, let 

π ∈ Π|ℳ| πM M
π α(π, ℳ) α(π, ℳ)

sup
π′ ∈Π′ ,c≥1

1

c (Vπ′ 

1,M (s1) − VπM
1,M (s1))

μπ′ 

h,M(s, a)

μexpl(π)
h,M (s, a)

≤ c s, a, h

expl(π) = Mixture({expl(πM)}M∈ℳ)

We need large MEG to hold for at least one task

Extending to MTRL
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max
M∈ℳ

Hold for at least one task

The current exploration policy  can significantly improve  for at least one task .  
We want this to happen whenever some  is  suboptimal.

expl(π) πM M
πM β
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There can be an exponential gap between Single-task MEG and Multitask MEG

Comparing MEG and Multitask MEG
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Blue: initial state; Red: goal state
Grid-world with small MEG

Each red cell is a goal state for a task
Grid-world with large Multitask MEG

For all , we have  for all  

For a goal-orientated environment (sparse reward on a goal ):  

When the initial state and the goal state are far,  can be exponentially small

π ∈ Π|ℳ| α(π, ℳ) ≥ α(πM, {M})/ M M ∈ ℳ

(sg, hg) α(π, {M}) ≤ Prexpl(π)(Shg
= sg)

Prexpl(π)(Shg
= sg)
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Definition 2 (Multitask Suboptimality).  is the -suboptimal policy class, such 
that for any , there exists  that is -suboptimal for MDP , i.e. 

Πβ ⊂ (Π)|ℳ| β
π ∈ Πβ πM β M

VπM
1,M ≤ maxπ∈Π Vπ

1,M − β

A definition of diverse task set

Sample Complexity Guarantee
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Definition 3 (Diverse Tasks). For some function , a tasks set is -diverse if any 
 has multitask myopic exploration gap  for any constant  

α̃ : [0,1] ↦ ℝ α̃
π ∈ Πβ α(π, ℳ) ≥ α̃(β) β > 0

Theorem 1 (Upper Bound for Sample Complexity). If  is -diverse, Algorithm 1 with 
-greedy exploration function has a sample-complexity  

    , 

Sample complexity: with  total number of episodes, Algorithm 1 outputs a -optimal 
policy for each  with a probability at least .

ℳ α̃ ϵ

𝒞(β, δ) = �̃� ( |ℳ |2 H2

α̃2(β)
ln(1/δ))

𝒞(β, δ) β
M 1 − δ
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Tabular case 
Diverse task: for each , there exists , such that  (  has sparse 

reward function on goal state ) 
Note that this construction is also used for the reward-free exploration under the tabular MDP setting 
Multitask MEG lower bound:  

Linear MDP 
Definition: there exists a feature mapping , such that , for some measure 

 over  and  for  
Diverse task: for any , there exists a subset , such that for all ,  with  and 

 

Multitask MEG lower bound: 

(s, h) ∈ 𝒮 × [H] Ms,h ∈ ℳ Rh′ ,Ms,h
(s′ ) = 𝕀[s′ = s, h′ = h] Ms,h

(s, h)

α(π, ℳ) = Ω(β2/( |𝒜 | |ℳ |H))

ϕh : 𝒮 × 𝒜 ↦ ℝd Ph(s′ ∣ s, a) = ⟨ϕh(s, a), νh(s′ )⟩
νh,i 𝒮 Rh(s, a) = ⟨ϕh(s, a), θh⟩ θh ∈ ℝd

h ∈ [H] ℳ(h) ⊂ ℳ M ∈ ℳ(h) θh′ ,M = 0 h′ ≠ h

σmin ( ∑
M∈ℳ(h)

𝔼π*M
M ϕh(sh, ah)ϕ⊤

h (sh, ah)) ≥ c

α(π, ℳ) = Ω(β2c/( |𝒜 | |ℳ |H))

Examples of Diverse Tasks
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Motivations  
Deep RL: a pre-trained feature extractor generates embeddings for Q-value function followed by a linear mapping 
This manner is similar to the setup in linear MDPs 
Diversity for Linear MDPs requires a full rank covariance matrix of  at each  if the optimal policy is executed.  
We conduct simple simulation studies on a robotic control environment, to verify that whether a more spread spectrum of the 
covariance matrix of the embeddings would lead to better sample efficiency 

Experiment setup 
Environment: BipedalWalker environment [1] 
The walker has controllable motors with torque  
The objective of the agent is to move forward, while crossing stumps with varying heights at regular intervals 
Task :   and  denote the heights of the stumps and the spacings between the stumps 

ϕh(sh, ah) h

Mp,q p q

Implications of Diversity in Deep RL
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Investigating feature covariance matrix 
Train PPO (Proximal Policy Optimization Algorithms) [1] agent on 100 tasks with different 
parameter vectors  
Evaluate  at the end of the training generated by near-optimal policies  

Compute the covariance matrix  

We observe that the stump heights  has a more significant impact on the spectrum 
compared to spacing  ((b) and (c)) 
Tasks with  leads to better diversity 

Coincidence with automatic curriculum learning (ACL) task selection 
ALP-GMM [2], a well-established ACL algorithm, for BipedalWalker environment 
Figure (d) gives the density plots of the ACL task sampler during the training process 
It shows a significant preference over heights  in the middle range, with little preference 
over spacing 

(p, q)
ϕ(s, a) ∈ ℝ300 π

Vp,q = 𝔼Mp,q
π ∑H

h=1 ϕ(sh, ah)ϕ(sh, ah)
T

p
q

p ∈ [1.0,2.3]

p
q

Experiments
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We train the same agent with different means of the stump heights , then fine tune them on all tasks 
Evaluation: the number of tasks the agent masters in the end of training 
Algorithm trained on tasks with stump heights in the middles masters significantly more tasks 

 

p

Training on different parameters

Generalization Performance
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