Balancing Act Constraining Disparate Impact in Sparse Models

Meraj Hashemizadeh*, Juan Ramirez*, Rohan Sukumaran, Golnoosh Farnadi, Simon Lacoste-Julien and Jose Gallego-Posada

The disparate impact of pruning

Model pruning affects the accuracy across data sub-groups unevenly

S. Hooker et al. What Do Compressed Deep Neural Networks Forget? 2019.

M. Paganini. Prune Responsibly. 2020.

C. Tran, F. Fioretto, J-E. Kim and R. Naidu. Pruning has a disparate impact on model accuracy. In NeurIPS, 2022.

The disparate impact of pruning

Model pruning affects the accuracy across data sub-groups unevenly

S. Hooker et al. What Do Compressed Deep Neural Networks Forget? 2019.

M. Paganini. Prune Responsibly. 2020.

C. Tran, F. Fioretto, J-E. Kim and R. Naidu. Pruning has a disparate impact on model accuracy. In NeurIPS, 2022.

Existing mitigation techniques

FairGRAPE (Lin et al. 2022)

Goal: minimize the variance of accuracy drops across groups

Approach: fairness-aware pruning, computing per-group-per-parameter importance score

Critique: scales poorly with number of groups and model size

Equalized Loss (Tran et al. 2022)

Approach: equalize the per-group losses to the aggregate loss

• ignores dense model performance • relies on the loss, a surrogate for the change in accuracy

C. Tran, F. Fioretto, J-E. Kim and R. Naidu. Pruning has a disparate impact on model accuracy. In NeurIPS, 2022. X. Lin, K. Seungbae, J. Joo. FairGRAPE: Fairness-aware GRAdient Pruning mEthod for Face Attribute Classification. In ECCV 2022

Goal: equalize accuracy drops across groups

Critiques:

Mitigate the disparate impact of pruning by imposing explicit constraints on the per-group accuracy changes with respect to the dense model

Of Directly address disparate impact by controlling group-level accuracy changes Constraint measurements do not rely on surrogates (like the loss) Scale to hundreds of protected groups and large models

 $\underset{\boldsymbol{\theta}_{s} \in \Theta}{\text{minimize } L\left(\boldsymbol{\theta}_{s} \mid \mathcal{D}_{\text{train}}\right)}$

subject to $\psi_g\left(\boldsymbol{\theta}_d, \boldsymbol{\theta}_s\right) = \operatorname{Acc}(\boldsymbol{\theta}_d \mid \mathscr{D}_g) - \operatorname{Acc}(\boldsymbol{\theta}_s \mid \mathscr{D}_g) - \operatorname{Acc}(\boldsymbol{\theta}_d \mid \mathscr{D}) - \operatorname{Acc}(\boldsymbol{\theta}_s \mid \mathscr{D}) \leq \epsilon \quad \forall g \in G$

accuracy change on group g \checkmark between θ_d and θ_s

loss of the sparse model $\boldsymbol{\theta}_s$ on the training set

 \sim overall accuracy change between θ_d and θ_s

Accountability

Models are only acceptable if they satisfy the imposed constraints

 $\underset{\boldsymbol{\theta}_{s} \in \Theta}{\text{minimize } L\left(\boldsymbol{\theta}_{s} \mid \mathcal{D}_{\text{train}}\right)}$

subject to $\psi_g\left(\boldsymbol{\theta}_d, \boldsymbol{\theta}_s\right) = \operatorname{Acc}(\boldsymbol{\theta}_d \mid \mathscr{D}_g) - \operatorname{Acc}(\boldsymbol{\theta}_s \mid \mathscr{D}_g) - \operatorname{Acc}(\boldsymbol{\theta}_d \mid \mathscr{D}) - \operatorname{Acc}(\boldsymbol{\theta}_s \mid \mathscr{D}) \leq \epsilon \quad \forall g \in G$

accuracy change on group g \checkmark between θ_d and θ_s

InterpretabilityConstraints are based on accuracy changes, and not surrogates like the loss

loss of the sparse model $\boldsymbol{\theta}_s$ on the training set

 \sim overall accuracy change between θ_d and θ_s

Accountability

Models are only acceptable if they satisfy the imposed constraints

 $\underset{\boldsymbol{\theta}_{s} \in \Theta}{\text{minimize } L\left(\boldsymbol{\theta}_{s} \mid \mathcal{D}_{\text{train}}\right)}$

subject to $\psi_g\left(\boldsymbol{\theta}_d, \boldsymbol{\theta}_s\right) = \operatorname{Acc}(\boldsymbol{\theta}_d \mid \mathscr{D}_g) - \operatorname{Acc}(\boldsymbol{\theta}_s \mid \mathscr{D}_g) - \operatorname{Acc}(\boldsymbol{\theta}_d \mid \mathscr{D}) - \operatorname{Acc}(\boldsymbol{\theta}_s \mid \mathscr{D}) \leq \epsilon \quad \forall g \in G$

accuracy change on group g \checkmark between θ_d and θ_s

loss of the sparse model $\boldsymbol{\theta}_s$ on the training set

 \sim overall accuracy change between θ_d and θ_s

Accountability

Models are only acceptable if they satisfy the imposed constraints

 $\underset{\boldsymbol{\theta}_{s} \in \Theta}{\text{minimize } L\left(\boldsymbol{\theta}_{s} \mid \mathcal{D}_{\text{train}}\right)}$

subject to $\psi_g\left(\boldsymbol{\theta}_d, \boldsymbol{\theta}_s\right) = \operatorname{Acc}(\boldsymbol{\theta}_d \mid \mathscr{D}_g) - \operatorname{Acc}(\boldsymbol{\theta}_s \mid \mathscr{D}_g) - \operatorname{Acc}(\boldsymbol{\theta}_d \mid \mathscr{D}) - \operatorname{Acc}(\boldsymbol{\theta}_s \mid \mathscr{D}) \leq \epsilon \quad \forall g \in G$

accuracy change on group g \checkmark between θ_d and θ_s

loss of the sparse model $\boldsymbol{\theta}_s$ on the training set

 \sim overall accuracy change between θ_d and θ_s

Accountability

Models are only acceptable if they satisfy the imposed constraints

UTKFace

sensitive attribute: *race* (5 groups) — *target*: *race*

Results

CIFAR100

sensitive attribute: class (100 groups) — target: class

UTKFace

sensitive attribute: *race* (5 groups) — *target*: *race*

Results

CIFAR100

sensitive attribute: class (100 groups) — target: class

UTKFace

sensitive attribute: race (5 groups) — target: race

Results

CIFAR100

sensitive attribute: class (100 groups) — target: class

The nuts & bolts

Proxy-constraints (Cotter et al. 2019)

Problem: constraints based on changes in accuracy, yielding a non-differentiable Lagrangian w.r.t. the model

Approach: use a surrogate function for computing constraint gradients, but keep non-differentiable measurement for assessing constraint satisfaction

Problem: mini-batch estimates of the constraints can have large variance, especially for small groups

Approach: estimate the accuracy of the sparse model based on (cached predictions) on the k most recent datapoints of each group

A. Cotter et al. Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals. In JMLR, 2019. V. Mnih et al. Playing Atari with Deep Reinforcement Learning. In NeurIPS Deep Learning Workshop, 2013.

Replay buffers (Mnih et al. 2019)

can be used in any optimization problem with stochasticallyestimated constraints

Generalization challenges

CIFAR100

sensitive attribute: *class (100 protected groups)* — *target*: *class*

Max Excess Accuracy Gap $[\max_{g} \psi_{g}]$ (%)

1 The generalization challenge affects all surveyed methods, including ours!

Generalization challenges

CIFAR100

sensitive attribute: *class (100 protected groups)* — *target*: *class*

1 The generalization challenge affects all surveyed methods, including ours!

Our proposed CEAG approach

- 1. enables direct mitigation of pruning-induced disparate impact,
- 2. exploits buffers for reducing variance in constraint estimation,
- 3. highlights need for further research on the test-time success of mitigation methods,
- 4. showcases the use of *Cooper*—our companion library for constrained optimization in PyTorch.

Balancing Act Constraining Disparate Impact in Sparse Models

Juan Ramirez* Rohan Sukumaran

Golnoosh Farnadi

Poster session #4 Wed. May 8, 4:30 PM

Simon Lacoste-Julien Jose Gallego-Posada