Dichotomy of Early and Late Phase Implicit Biases
Can Provably Induce Grokking
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Example: Two-layer Diagonal Nets

— train —  test

— s ‘ Our Goal: Give some examples of grokking with precise theoretical characterization. ‘ Two-layer Diagonal Net: A reparameterization of linear model
80% - f ; (Woodworth et al., 2020)
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> oo - ; Classification with L2 Regularization (Weight Decay): Assumptlop 1: Homogeneous Nets (1yu & Li, 2020; Ji & Telgarsky, 2020, ...) F(8;%) =(u®u—v0v,x), 0= (uv).
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0% | R =1 : Initialization: u = v = (1,1, ..., 1).
010° 10! 102 1035t224 105 106 107 10° We use the exponential loss f(CI) — e~ 4 for S|mp||C|ty ASSUmp'.tIOnzz. Smoothness Kernel SYM = L2 max-margin linear classifier
{'(Ht; ?) 'S.C 'l_srqootg wrt H'f ould be extendablo ¢ Max-margin solution = L1 max-margin linear classifier
ust for simplicity; the proof should be extendable to non- : :
For some algorithmic datasets... Gradient Flow: ) PR g (encouraging sparsity)
- smooth cases)
 Example (Modular Addition):
Given one-hot representations of a, b, output (a + b) mod p I —VL,;(6) o ———
 Other Examples: learning group operations, sparse parity _ : R T . Assumption 3: Zero initial output 0%
’ ’ = gradient descent with infinitesimal learning rate — — i i > g0
GCD... =8 g rate) 0 satisfies £(0; x) = 0 for all x. >parse Linear Regression |
.. : _ = Grokking <
training neural nets leads to grokking (Power et al., 2022): Justification: A common assumption for studying NTK. Make o
* Phase 1: train acc = 100% .but test acc is very low Large Initialization, Small Weight Decay the proof much simpler (chizat et al,, 2019; Hu et al,, 2020), a0 100 07 107 100 0% 10
* Butafter training jor sufﬂuin.tly longer .. “large init & small WD makes grokking more significant” * can be done by symmetrized init or “difference trick” - U+
* Phase 2: test acc “suddenly” jumps to 100% _ o , , . y = sgn(x; + xz + x3)
= Take 8(0) = aB, aa > +o0, 1 - 0.  NTK init + width —» oo = approximately true. Proof is .
Many recent works aim to explain grokking: Liu et al. (2023); Asymptotics: 1 = O(a~P) for some positive p = 0(1). usually extendable to this case. o
Varma et al. (2023); Thilak et al. (2022); Notsawo Jr et al. (2023); Labels are generated by a linear g sox-
Nanda et al. (2023); Chughtai et al. (2023); Gromov (2023); late phase bias: classifier with large L2 margin e
Zunkovi¢ & llievski (2022); Levi et al. (2024). fit early phase bias: grokking! margin maximization = “Misgrokking” sonll — L

But ... kernel SVM (characterized by KKT conditions) 7~ N(:, D

1. No theoretical analysis for neural nets _ sn(zw). x = 2+ Lyw
2. No quantitative explanation for why the transition is sharp in f_% f_% R R T
grokking I I I > ;
1 Example: Completing Multiplication Tables

. . . t=0 t=o0(1) tg=iloga
Ablation Studies: Init Scale and WD (Our results can be extended to regression settings; see our paper)
Mot oo Heltx0  —— He it x100 T 00008 20003 Overparameterized Matrix Completion:
—— e Theorem 1. For ¢ € (0,1),att = (1 — ¢)t,, the model Theorem 2. For ¢ > 0,at t = (1 + c)t,, the model attains Parameterize W = UUT — VVT U V € R%d
00 AR L00%- ~ outputs the same as the kernel SVM with K (x, x") fi d imal conditions (KKT conditions) for th N C '
™~ _: { e o I’" W _ (V£(8; x), Vf(8; x')) when @ — 40 ’ irst-order optimal conditions (KKT conditions) for the Use MSE loss on observed entries.
2 oo =M > eo%- Pkl 1] - r ’ W ‘ following margin maximization problem: Related to learning two-layer nets with quadratic activation.
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Grokking time is delayed Grokking time is delayed Key InS|g hts Observed Early Phase: Late phase:
with larger init with smaller WD Kernel Regression Norm minimization
= Fillin O = Find a matrix with
“large init & small WD makes grokking more significant” Kernel regime: min nuclear norm
. . _ . _ _ 0(t) 0(0) (encouraging low-rank)
* Unlike the usual kernel regime, where 8(t) = 0(0), here the parameter itself changes a lot but direction does not, i.e., TOTRRATIONR
. . . . . 2 2
Prior YVOfk (Liu et al., 2023): With large init and small WD, * Analyze the change in direction and norm very carefully. Cvan et
grokking may happen even on natl.JraI tasks . o * Some calculation = As long as the norm is not 0<(log%)1/L>, 0 is in the kernel regime. 0.10- o
(e.g., image/sentiment classification) ool o E
Rich regime: o0t | i
. 1 1 . . 0.02 - 20
* Once the norm decays to this level, only o (Zlogz) time is needed to reach the KKT.
0.00 - Lo
 Turns out to be very short compared to the time to decay the norm! P107 107 10° 3¢° 107 107 10° 10
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