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What is Grokking?

Ablation Studies: Init Scale and WD

Main Results Example: Two-layer Diagonal Nets

Example: Completing Multiplication Tables

early phase bias:
kernel SVM
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fit grokking!
late phase bias:

margin maximization
(characterized by KKT conditions)

Assumption 1: Homogeneous Nets (Lyu & Li, 2020; Ji & Telgarsky, 2020, …)

The model is 𝐿-homogeneous wrt 𝜽:
𝑓 𝑐𝜽; 𝑥 = 𝑐𝐿𝑓(𝜽; 𝑥) for all 𝑐 > 0

Classification with L2 Regularization (Weight Decay):
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We use the exponential loss ℓ 𝑞 = 𝑒−𝑞 for simplicity

Gradient Flow:

d𝜽

d𝑡
= −∇ℒ𝜆 𝜽

(= gradient descent with infinitesimal learning rate)

Large Initialization, Small Weight Decay

   “large init & small WD makes grokking more significant”

   ⇒ Take 𝜽 0 = 𝛼ഥ𝜽, 𝛼 → +∞, 𝜆 → 0.

Asymptotics: 𝜆 = Θ 𝛼−𝑝  for some positive 𝑝 = Θ(1).

Assumption 2: Smoothness
𝑓(𝜽; 𝑥) is 𝒞2-smooth wrt 𝜽.
(just for simplicity; the proof should be extendable to non-
smooth cases)

Assumption 3: Zero initial output
ഥ𝜽 satisfies 𝑓 ഥ𝜽; 𝒙 = 0 for all 𝒙.

Justification: A common assumption for studying NTK. Make 
the proof much simpler (Chizat et al., 2019; Hu et al., 2020).

• can be done by symmetrized init or “difference trick”

• NTK init + width → ∞ ⇒ approximately true. Proof is 

usually extendable to this case.

Theorem 1. For 𝑐 ∈ 0,1 , at 𝑡 = 1 − 𝑐 𝑡𝑔, the model 

outputs the same as the kernel SVM with 𝐾 𝑥, 𝑥′

= ∇𝑓 ഥ𝜽; 𝑥 , ∇𝑓 ഥ𝜽; 𝑥′  when 𝛼 → +∞.

min 𝒉 2
2 s. t.  𝑦𝑖 ∇𝑓 ഥ𝜽; 𝒙𝑖 , 𝒉 ≥ 1

Theorem 2. For 𝑐 > 0, at 𝑡 = 1 + 𝑐 𝑡𝑔, the model attains 

first-order optimal conditions (KKT conditions) for the 
following margin maximization problem:

min 𝜽 2
2 s. t.  𝑦𝑖𝑓 𝜽; 𝑥𝑖 ≥ 1

For some algorithmic datasets…
• Example (Modular Addition):
 Given one-hot representations of 𝑎, 𝑏, output 𝑎 + 𝑏  mod 𝑝
• Other Examples: learning group operations, sparse parity, 

GCD…
training neural nets leads to grokking (Power et al., 2022):
• Phase 1: train acc = 100% but test acc is very low
• But after training for sufficiently longer …
• Phase 2: test acc “suddenly” jumps to 100%

Many recent works aim to explain grokking: Liu et al. (2023); 
Varma et al. (2023); Thilak et al. (2022); Notsawo Jr et al. (2023); 
Nanda et al. (2023); Chughtai et al. (2023); Gromov (2023); 
Žunkovič & Ilievski (2022); Levi et al. (2024).

But ...
1. No theoretical analysis for neural nets
2. No quantitative explanation for why the transition is sharp in 

grokking

Grokking time is delayed 
with larger init

Grokking time is delayed 
with smaller WD

Prior work (Liu et al., 2023): With large init and small WD, 
grokking may happen even on natural tasks

(e.g., image/sentiment classification)

“large init & small WD makes grokking more significant”

𝒙 ∼ 𝑈( ±1 𝑑)
𝑦 = sgn 𝑥1 + 𝑥2 + 𝑥3

𝒛 ∼ 𝒩 𝟎, 𝑰

𝑦 = sgn 𝒛, 𝒘∗ , 𝒙 = 𝒛 +
𝛾

2
𝑦𝒘∗

Overparameterized Matrix Completion:
Parameterize 𝑾 = 𝑼𝑼𝑇 − 𝑽𝑽𝑇, 𝑼, 𝑽 ∈ ℝ𝑑×𝑑.
Use MSE loss on observed entries.
Related to learning two-layer nets with quadratic activation.

1 ? 3
? ? 6
3 6 ?

Observed

1 0 3
0 0 6
3 6 0
Early Phase:

Kernel Regression
= Fill in 0

1 2 3
2 4 6
3 6 9
Late phase:

Norm minimization
= Find a matrix with 
min nuclear norm 

(encouraging low-rank)

Our Goal: Give some examples of grokking with precise theoretical characterization.

Key Insights

Two-layer Diagonal Net: A reparameterization of linear model 
(Woodworth et al., 2020)

𝑓 𝜽; 𝒙 = 𝒖 ⊙ 𝒖 − 𝒗 ⊙ 𝒗, 𝒙 , 𝜽 = 𝒖, 𝒗 .

Alternatively: 𝒘 = 𝒖 ⊙ 𝒖 − 𝒗 ⊙ 𝒗, 𝑓 𝜽; 𝒙 = 𝒘, 𝒙 . 

Initialization: 𝒖 = 𝒗 = (1,1, … , 1).
Kernel SVM = L2 max-margin linear classifier
Max-margin solution = L1 max-margin linear classifier 

(encouraging sparsity)

Sparse Linear Regression
⇒ Grokking

Labels are generated by a linear 
classifier with large L2 margin
⇒ “Misgrokking”

(Our results can be extended to regression settings; see our paper)

Kernel regime:

• Unlike the usual kernel regime, where 𝜽 𝑡 ≈ 𝜽 0 , here the parameter itself changes a lot but direction does not, i.e., 
𝜽 𝑡

𝜽 𝑡 2
≈

𝜽 0

𝜽 0 2
.

• Analyze the change in direction and norm very carefully.

• Some calculation ⇒ As long as the norm is not 𝑂 log
1

𝜆

1/𝐿
, 𝜽 is in the kernel regime.

Rich regime:

• Once the norm decays to this level, only 𝑜
1

𝜆
log

1

𝜆
 time is needed to reach the KKT.

• Turns out to be very short compared to the time to decay the norm!
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