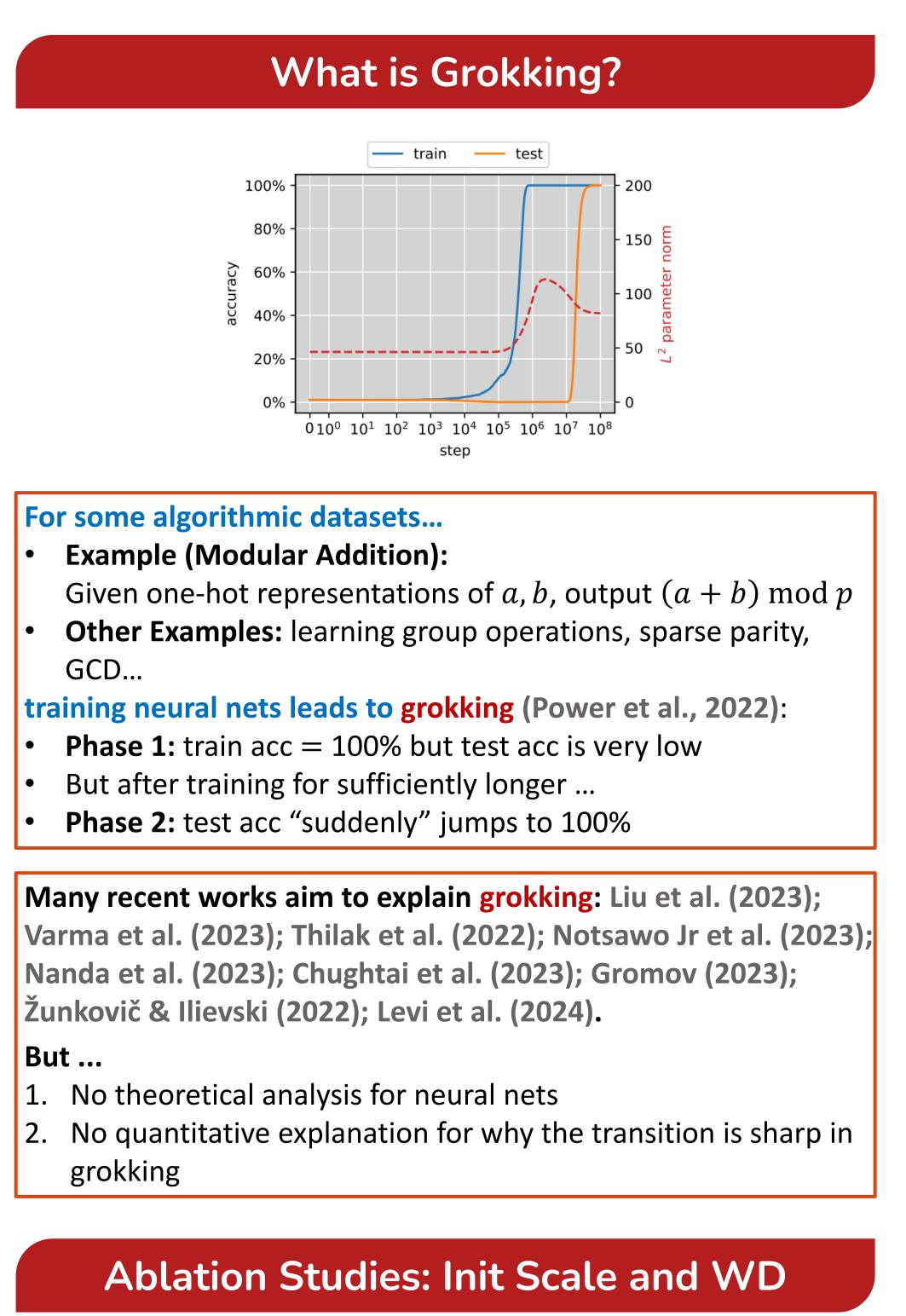
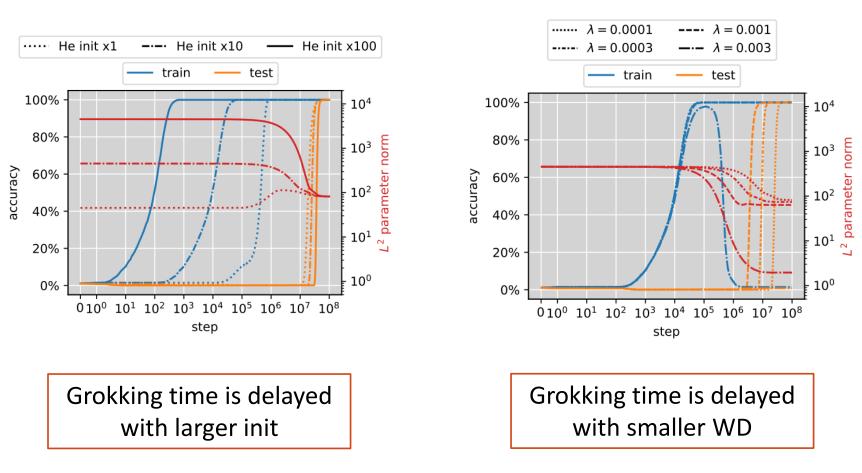
Dichotomy of Early and Late Phase Implicit Biases Can Provably Induce Grokking

Kaifeng Lyu*, Jikai Jin*, Zhiyuan Li, Simon S. Du, Jason D. Lee, Wei Hu ¹Princeton University ²Stanford University ³Toyota Technological Institute at Chicago ⁴University of Washington ⁵University of Michigan



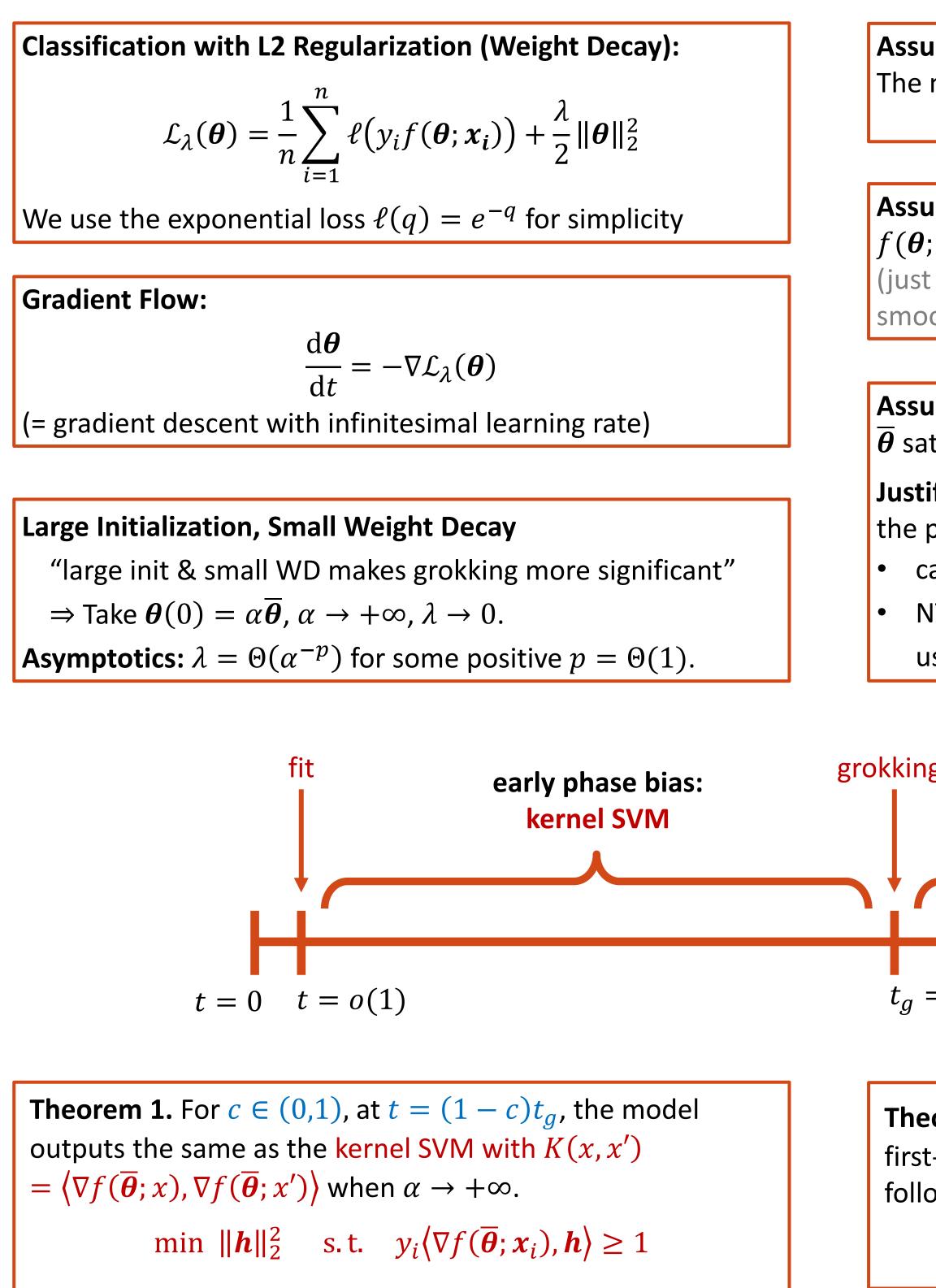


"large init & small WD makes grokking more significant"

Prior work (Liu et al., 2023): With large init and small WD, grokking may happen even on natural tasks (e.g., image/sentiment classification)

Main Resul

Our Goal: Give some examples of grokking with



Key Insigh^{*}

Kernel regime:

- Unlike the usual kernel regime, where $\theta(t) \approx \theta(0)$, here the parameter its
- Analyze the change in direction and norm very carefully.
- Some calculation \Rightarrow As long as the norm is not $o\left(\left(\log \frac{1}{\lambda}\right)^{1/L}\right)$, θ is in the kernel

Rich regime:

- Once the norm decays to this level, only $o\left(\frac{1}{\lambda}\log\frac{1}{\lambda}\right)$ time is needed to reac
- Turns out to be very short compared to the time to decay the norm!

lts	
precise theoretical characterization.	Two-
	Two- (Woo
umption 1: Homogeneous Nets (Lyu & Li, 2020; Ji & Telgarsky, 2020,)	
model is <i>L</i> -homogeneous wrt $\boldsymbol{\theta}$: $f(c\boldsymbol{\theta}; x) = c^L f(\boldsymbol{\theta}; x)$ for all $c > 0$	Alter
$f(c0, x) = c f(0, x)$ for all $c \ge 0$	
umption 2: Smoothness	Initia
(x) is C^2 -smooth wrt θ .	Kerne
t for simplicity; the proof should be extendable to non-	Max-
ooth cases)	
umption 3: Zero initial output	
atisfies $f(\overline{\theta}; x) = 0$ for all x .	Spar: ⇒ G
ification: A common assumption for studying NTK. Make	
proof much simpler (Chizat et al., 2019; Hu et al., 2020).	
can be done by symmetrized init or "difference trick"	
NTK init + width $\rightarrow \infty \Rightarrow$ approximately true. Proof is	
usually extendable to this case.	
	Labe
late phase bias:	class ⇒ "N
margin maximization	
(characterized by KKT conditions)	
$=\frac{1}{2}\log \alpha$	Exa
$= \frac{1}{\lambda} \log \alpha$	(Our r
	`
eorem 2. For $c > 0$, at $t = (1 + c)t_q$, the model attains	OverpParamUse NRelate
t-order optimal conditions (KKT conditions) for the	Param
owing margin maximization problem:	Use IV Relate
min $\ \boldsymbol{\theta}\ _2^2$ s.t. $y_i f(\boldsymbol{\theta}; x_i) \ge 1$	Relate
$\lim_{n \to \infty} \ \mathbf{v} \ _2^2 \text{s.c.} \mathbf{y}_i \mathbf{j} (\mathbf{v}, \mathbf{x}_i) \ge 1$	
nts	
itself changes a lot but direction does not, i.e., $\frac{\theta(t)}{\ \theta(t)\ _2} \approx \frac{\theta}{\ \theta(t)\ _2}$	(0)
$\ \boldsymbol{\theta}(t)\ _{2} \sim \ \boldsymbol{\theta}(t)\ _{2}$	$(0)\ _{2}$
el regime.	
ab + ba VVT	
ch the KKT.	

Example: Two-layer Diagonal Nets **-layer Diagonal Net:** A reparameterization of linear model podworth et al., 2020) $f(\boldsymbol{\theta}; \boldsymbol{x}) = \langle \boldsymbol{u} \odot \boldsymbol{u} - \boldsymbol{v} \odot \boldsymbol{v}, \boldsymbol{x} \rangle,$ $\boldsymbol{\theta} = (\boldsymbol{u}, \boldsymbol{v}).$ ernatively: $w = u \odot u - v \odot v$, $f(\theta; x) = \langle w, x \rangle$. ialization: u = v = (1, 1, ..., 1). **nel SVM** = L2 max-margin linear classifier **x-margin solution** = L1 max-margin linear classifier (encouraging sparsity) — train arse Linear Regression ີ 80% -70% -Grokking 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10 $\boldsymbol{x} \sim U(\{\pm 1\}^d)$ $y = \operatorname{sgn}(x_1 + x_2 + x_3)$ els are generated by a linear 80% -70% ssifier with large L2 margin 'Misgrokking" step $m{z} \sim \mathcal{N}(m{0}, m{I})$ $y = \operatorname{sgn}(\langle \boldsymbol{z}, \boldsymbol{w}^* \rangle), \boldsymbol{x} = \boldsymbol{z} + \frac{\gamma}{2} \boldsymbol{y} \boldsymbol{w}^*$ ample: Completing Multiplication Tables results can be extended to regression settings; see our paper) rparameterized Matrix Completion: meterize $\boldsymbol{W} = \boldsymbol{U}\boldsymbol{U}^T - \boldsymbol{V}\boldsymbol{V}^T$, $\boldsymbol{U}, \boldsymbol{V} \in \mathbb{R}^{d \times d}$. MSE loss on observed entries. ted to learning two-layer nets with quadratic activation.

