

MogaNet: Efficient Multi-order Gated Aggregation Network

Siyuan Li*, Zedong Wang*, Zicheng Liu, Cheng Tan, Haitao Lin, Di Wu, Zhiyuan Chen, Jiangbin Zheng, Stan Z. Li*

Westlake University, Zhejiang University

Timeline of Modern CNNs

InceptionNeXt CVPR'2024 (2023)

DCN.V4 CVPR'2024

ConvNeXt CVPR'2022

RepLKNet CVPR'2022

SLaK ICLR'2023 ConvNeXt.V2 CVPR'2023

DCN.V3 CVPR'2023 UniRepLKNet CVPR'2024

Convolution Kernel Designs

Large-Kernel Convolutions + Gated Attentions

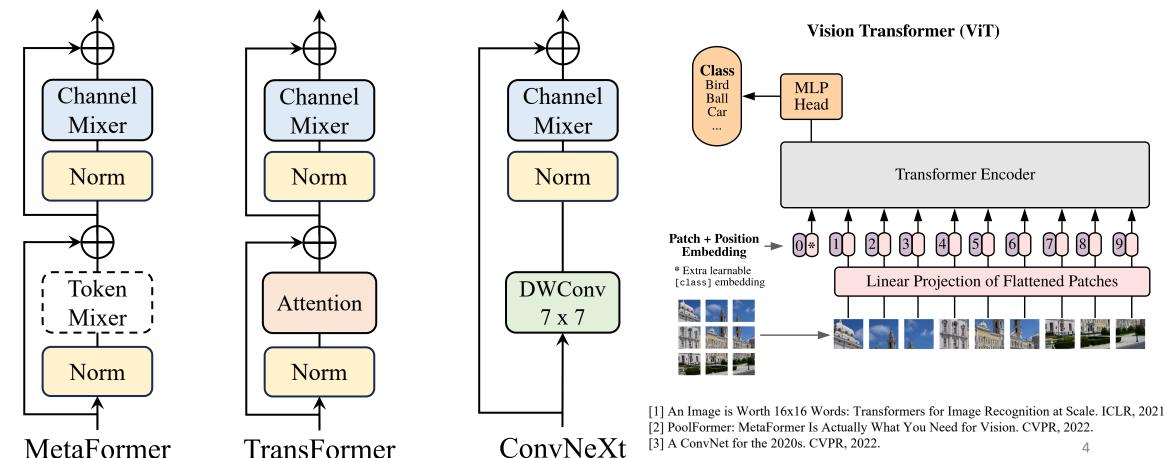
VAN (2022) CVMJ'2023

HorNet NeurIPS'2022 FocalNet NeurIPS'2022

MogaNet (2022) ICLR'2024 Mamba arXiv'2023

VMamba arXiv'2024

Content


- 1. Background: Macro Design and Pre-training MetaFormer, ConvNeXt, ConvNeXt.V2 (SparK, A2MIM)
- 2. Background: Design of Convolution Kernels RepLKNet, SLaK, InceptionNext, DCN.V3/V4, UniRepLKNet
- 3. Combining Large Kernel with Gated Attention VAN, HorNet, FocalNet, MogaNet, Mamba, VMamba, etc.

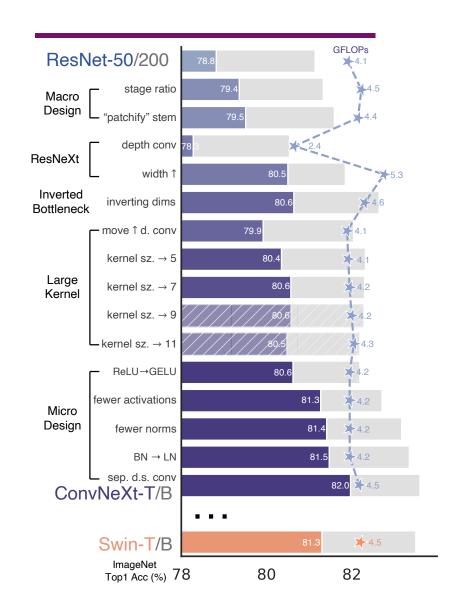
Modern CNNs: Macro Design

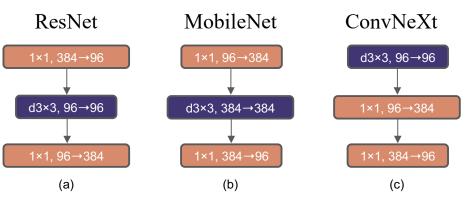
Macro Design: Patch Embedding + Token Mixing + Channel Mixing +

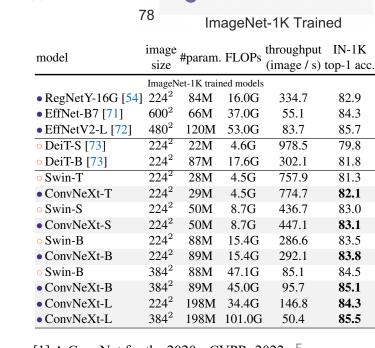
Pre-Norm & Short-cut.

Modern CNNs: ConvNeXt

Swin Transformer (2021)

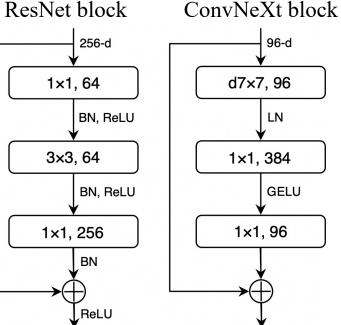

DeiT


(2020)


ResNet

(2015)

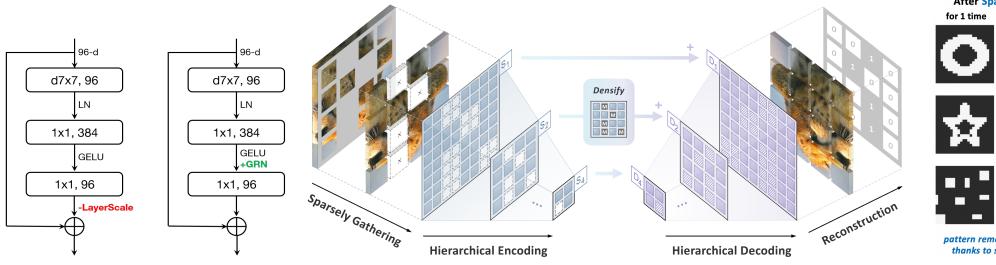
ConvNeXt



86

84

82


80

Modern CNNs: ConvNeXt.V2

CNNs benefit from Masked Image Modeling (MIM) Pre-training.

ConvNeXt.V1 ConvNeXt.V2

MIM pre-training with SparK (or FCMAE in ConvNeXt.V2)

Sparse Conv for Masking

Global Response Normalization (GRN)

```
# X: input of shape (N,H,W,C)  \begin{aligned} & \text{gx = torch.norm}(\text{X, p=2, dim=(1,2), keepdim=True}) \\ & \text{nx = gx / (gx.mean(dim=-1, keepdim=True)+1e-6)} \\ & \text{return gamma * (X * nx) + beta + X} \end{aligned}   \mathcal{G}(X) := X \in \mathcal{R}^{H \times W \times C} \rightarrow gx \in \mathcal{R}^{C}
```

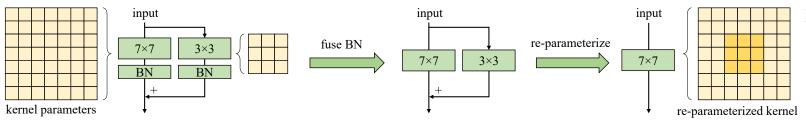
gamma, beta: learnable affine transform parameters

$\mathcal{G}(X) := X \in \mathcal{R}^{H \times W}$	$\mathbf{x}^C \to gx \in \mathcal{R}^C$
$\mathcal{N}(X_i) := X_i \in \mathcal{R} \to$	$\frac{ X_i }{\sum_{j=1,\dots,C} X_j } \in \mathcal{R}$

Backbone	Method	#param	FLOPs	Val acc.
ConvNeXt V1-B	Supervised	89M	15.4G	83.8
ConvNeXt V1-B	FCMAE	89M	15.4G	83.7
ConvNeXt V2-B	Supervised	89M	15.4G	84.3 (+0.5)
ConvNeXt V2-B	FCMAE	89M	15.4G	84.6 (+0.8)
ConvNeXt V1-L	Supervised	198M	34.4G	84.3
ConvNeXt V1-L	FCMAE	198M	34.4G	84.4
ConvNeXt V2-L	Supervised	198M	34.4G	84.5 (+0.2)
ConvNeXt V2-L	FCMAE	198M	34.4G	85.6 (+1.3)

Methods	#Para.	Sup.	$MoCoV3^{\ddagger}$	SimMIM [‡]	SparK	A^2MIM
Target	(M)	Label	CL	RGB	RGB	RGB
ResNet-50	25.6	79.8	80.1	79.9	80.6	80.4
ResNet-101	44.5	81.3	81.6	81.3	82.2	81.9
ResNet-152	60.2	81.8	82.0	81.9	82.7	82.5
ResNet-200	64.7	82.1	82.5	82.2	83.1	83.0
ConvNeXt-T	28.6	82.1	82.3	82.1	82.7	82.5
ConvNeXt-S	50.2	83.1	83.3	83.2	84.1	83.7
ConvNeXt-B	88.6	83.5	83.7	83.6	84.8	84.1

Content



- 1. Background: Macro Design and Pre-training MetaFormer, ConvNeXt, ConvNeXt.V2 (SparK, A2MIM)
- 2. <u>Background: Design of Convolution Kernels</u>
 RepLKNet, SLaK, InceptionNext, DCN.V3/V4, UniRepLKNet
- 3. Combining Large Kernel with Gated Attention VAN, HorNet, FocalNet, MogaNet, Mamba, VMamba, etc.

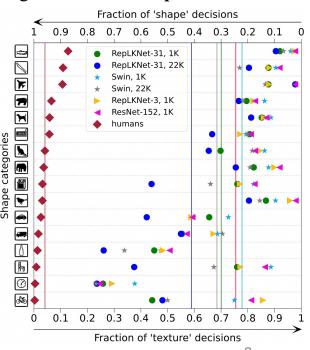
Large Kernels: RepLKNet

- Large-Kernel (LK) Convolutions are efficient and competitive as Self-attention.
- Training extremely large convolutions with Structural Re-parameterization.

Resolution R	Imml		Latency (ms) @ Kernel size										
Resolution It	Impl	3	5	7	9	13	17	21	27	29	31		
$\phantom{00000000000000000000000000000000000$	Pytorch	5.6	11.0	14.4	17.6	36.0	57.2	83.4	133.5	150.7	171.4		
10 × 10	Ours	5.6	6.5	6.4	6.9	7.5	8.4	8.4	8.4	8.3	8.4		
32×32	Pytorch	21.9	34.1	54.8	76.1	141.2	230.5	342.3	557.8	638.6	734.8		
32 × 32	Ours	21.9	28.7	34.6	40.6	52.5	64.5	73.9	87.9	92.7	96.7		
64×64	Pytorch	69.6	141.2	228.6	319.8	600.0	977.7	1454.4	2371.1	2698.4	3090.4		
04 × 04	Ours	69.6	112.6	130.7	152.6	199.7	251.5	301.0	378.2	406.0	431.7		

			ImageNe	et	ADE20K			
Kernel size	Architecture	Top-1	Params	FLOPs	mIoU	Params	FLOPs	
7-7-7-7	ConvNeXt-Tiny	81.0	29M	4.5G	44.6	60M	939G	
7-7-7-7	ConvNeXt-Small	82.1	50M	8.7G	45.9	82M	1027G	
7-7-7-7	ConvNeXt-Base	82.8	89M	15.4G	47.2	122M	1170G	
31-29-27-13	ConvNeXt-Tiny	81.6	32M	6.1G	46.2	64M	973G	
31-29-27-13	ConvNeXt-Small	82.5	58M	11.3G	48.2	90M	1081G	

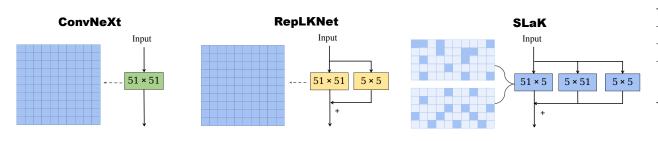
Extremely large kernels benefit both classification and downstream tasks and outperforms ViTs.


Large kernels are memory bound instead of compute bound.

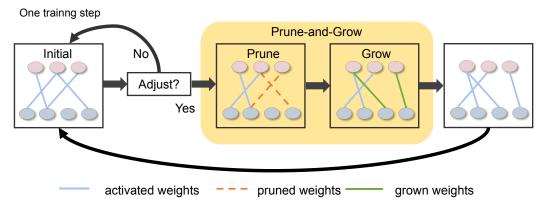
Swin-T	ConvNeXt-T	RepLKNet
00 02 04 06 08 10	0.2 0.4 0.6 0.8 1.0	0.2 0.4 0.6 0.8 1.

Effective receptive field

 $DW7 \times 7 = DW3 \times 3$ (BN) $+DW7 \times 7$ (BN)+Short-cut.


Large kernels are **shape biased** as ViTs.

Large Kernels: SLaK

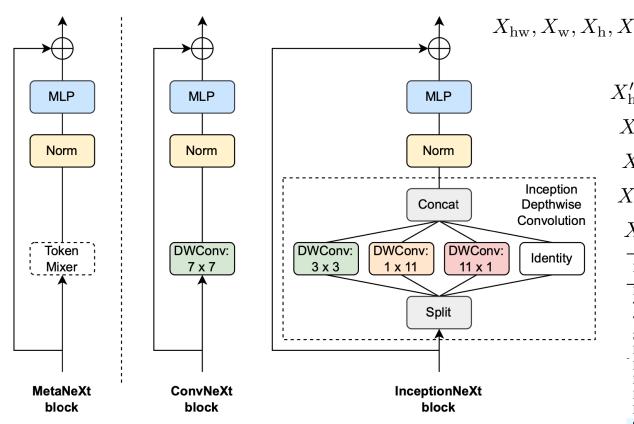


- Step 1: Decomposing a large kernel (61x61) into two rectangular, parallel kernels.
- Step 2: Using sparse groups training (speedup), expanding more width.

Kernel Size]	Гор-1 Ас	cc #Params	FLOPs	Top-1 Acc	#Params	FLOPs	Top-1 Acc	#Params	FLOPs
			Decomposed		Sp	arse groups		Sparse grou	ps, expand r	nore width
7-7-7-7		81.0	29M	4.5G	80.0	17M	2.6G	81.1	29M	4.5G
31-29-37-13	; [81.3	30M	5.0G	80.4	18M	2.9G	81.5	30M	4.8G
51-49-47-13	;	81.5	31M	5.4G	80.5	18M	3.1G	81.6	30M	5.0G
61-59-57-13	:	81.4	31M	5.6G	80.4	19M	3.2G	81.5	31M	5.2G

Model	Kernel Size	AP^{box}	AP_{50}^{box}	AP_{75}^{box}	AP^{mask}	AP_{50}^{mask}	AP_{75}^{mask}			
pre-trained for	120 epochs, fine	etuned for	r 1× (12	epochs)						
ConvNeXt-T (Liu et al., 2022b)	7-7-7-7	47.3	65.9	51.5	41.1	63.2	44.4			
ConvNeXt-T (RepLKNET)* (Ding et al., 2022)	31-29-27-13	47.8	66.7	52.0	41.4	63.9	44.7			
SLaK-T	51-49-47-13	48.4	67.2	52.5	41.8	64.4	45.2			
pre-trained for 300 epochs, finetuned for $3 \times (36 \text{ epochs})$										
ConvNeXt-T (Liu et al., 2022b)	7-7-7-7	50.4	69.1	54.8	43.7	66.5	47.3			
SLaK-T	51-49-47-13	51.3	70.0	55.7	44.3	67.2	48.1			

- (1) Initialization: Constructing Sparce Convolution based on SNIP^[2]
- (2) Dynamic sparsity: Pruning (the lowest magnitude) and growing


^[1] More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity. ICLR, 2023.

^[2] SNIP: Single-shot Network Pruning based on Connection Sensitivity. ICLR, 2019.

Large Kernels: InceptionNeXt

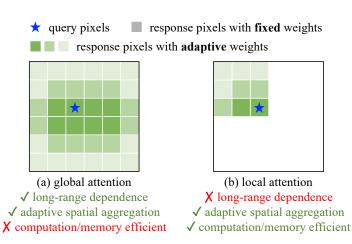
- MetaNeXt: Fusing Token Mixer with Channel Mixer + PreNorm + ShortCut.
- Inception Kernels: Better performance and throughputs than Depth-wise Conv 7x7.

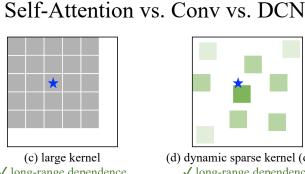
[1] InceptionNeXt: When Inception Meets ConvNeXt. CVPR, 2024.

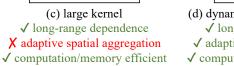
$X_{\mathrm{id}} = \mathrm{Split}(X)$	i	
$= X_{:,:g}, X_{:g:2g}, X_{:2g:3g}, X_{:3g:}$	400 -	△ Deptheise convolution Inception deptheise convolution (Ours)
$X'_{\text{hw}} = \text{DWConv}_{k_s \times k_s}^{g \to g} g(X_{\text{hw}}),$	(MH 300 -	
$X'_{\mathbf{w}} = \mathrm{DWConv}_{1 \times k_b}^{g \to g} g(X_{\mathbf{w}}),$.0Ps (CF	
$X'_{\rm h} = {\rm DWConv}_{k_b \times 1}^{g \to g} g(X_{\rm h}),$	급	
$X'_{\rm id} = X_{\rm id}.$	0 -	
$X' = \operatorname{Concat}(X'_{\operatorname{hw}}, X'_{\operatorname{w}}, X'_{\operatorname{h}}, X'_{\operatorname{id}})$).	3 5 7 9 11 13 15 Kernel size

Model	Mixing	Image	Params	MACs	Throughput	(img/second)	Top-1
Model	Type	(size)	(M)	(G)	Train	Inference	(%)
DeiT-S [61]	Attn	224^{2}	22	4.6	1227	3781	79.8
T2T-ViT-14 [76]	Attn	224^{2}	22	4.8	_	_	81.5
TNT-S [18]	Attn	224^{2}	24	5.2	_	_	81.5
Swin-T [37]	Attn	224^{2}	29	4.5	564	1768	81.3
Focal-T [73]	Attn	224^{2}	29	4.9	_	_	82.2
ResNet-50 [20, 69]	Conv	224^{2}	26	4.1	969	3149	78.4
RSB-ResNet-50 [20, 69]	Conv	224^{2}	26	4.1	969	3149	79.8
RegNetY-4G [46, 69]	Conv	224^{2}	21	4.0	670	2694	81.3
FocalNet-T [72]	Conv	224^{2}	29	4.5	_	_	82.3
ConvNeXt-T [38]	Conv	224^{2}	29	4.5	575	2413 (1943)	82.1
InceptionNeXt-T (Ours)	Conv	224^{2}	28	4.2	901 (+57%)	2900 (+20%)	82.3 (+0.2)

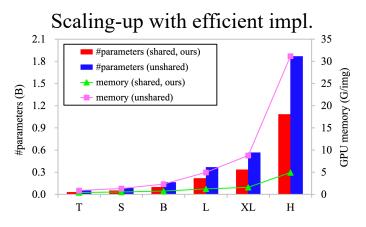

g rules


 L_3


Kernel Designs: DCN.V3 (InternImage)



DCN.V3: Learnable offsets (V1) + Softmax-normalized modulation (V2) + Grouping.



(d) dynamic sparse kernel (ours) ✓ long-range dependence ✓ adaptive spatial aggregation ✓ computation/memory efficient

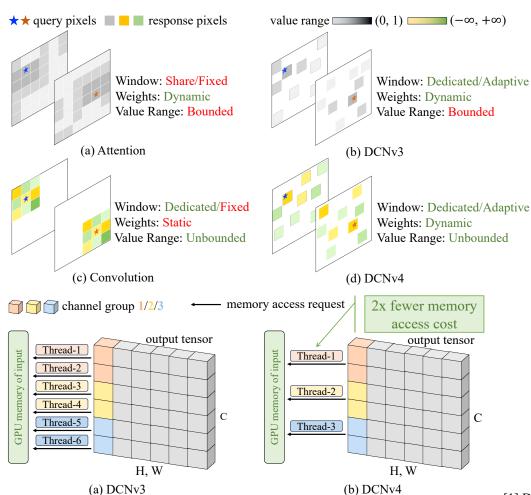
DCN.V1: $\mathbf{y}(\mathbf{p}_0) = \sum_{n} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n + \Delta \mathbf{p}_n)$
$\mathbf{p}_n {\in} \mathcal{R} \ K$
DCN.V2: $\mathbf{y}(p_0) = \sum_{k=1}^{\infty} \mathbf{w}_k \mathbf{m}_k \mathbf{x}(p_0 + p_k + \Delta p_k)$
G K
DCN.V3: $\mathbf{y}(p_0) = \sum \sum \mathbf{w}_g \mathbf{m}_{gk} \mathbf{x}_g (p_0 + p_k + \Delta p_{gk})$
q=1 k=1

Offsets Δp_n , Regular grids p_n , Modulation m_k , weights w

^[3] InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions. CVPR, 2023.

type	scale	#params	#FLOPs	acc (%)
T	$384^{\hat{2}}$	197M	115G	87.6
C	384^{2}	172M	96G	86.6
C	384^{2}	202M	102G	87.7
C	384^{2}	198M	101G	87.5
C	384^{2}	350M	179G	87.8
C	384^{2}	223M	108G	87.7
C	384^{2}	335M	163G	88.0
T	518^{2}	1.84B	5160G	90.5
T	512^{2}	1.47B	1521G	90.5
T	512^{2}	2.44B	2586G	90.9
T	_	893M	_	90.0
T	640^{2}	3.00B	_	90.2
C	384^{2}	335M	129G	87.8
C	480^{2}	928M	_	87.5
C	224^{2}	1.08B	188G	88.9
C	640^{2}	1.08B	1478G	89.6
	T C C C C C C C C C C C C C C C C C C C	T 384 ² C 384 ² C 384 ² C 384 ² C 384 ² C 384 ² T 512 ² T 512 ² T - T 640 ² C 384 ² C 384 ² C 224 ²	T 384 ² 197M C 384 ² 172M C 384 ² 202M C 384 ² 198M C 384 ² 350M C 384 ² 223M C 384 ² 335M T 518 ² 1.84B T 512 ² 1.47B T 512 ² 2.44B T - 893M T 640 ² 3.00B C 384 ² 335M C 480 ² 928M C 224 ² 1.08B	T 384 ² 197M 115G C 384 ² 172M 96G C 384 ² 202M 102G C 384 ² 198M 101G C 384 ² 350M 179G C 384 ² 223M 108G C 384 ² 335M 163G T 518 ² 1.84B 5160G T 512 ² 1.47B 1521G T 512 ² 2.44B 2586G T - 893M - T 640 ² 3.00B - C 384 ² 335M 129G C 480 ² 928M - C 224 ² 1.08B 188G

^[1] Deformable Convolutional Networks. ICCV, 2017.


^[2] Deformable ConvNets v2: More Deformable, Better Results. CVPR, 2018.

Kernel Designs: DCN.V4

★★ query pixels

DCN.V4: No Softmax normalization + Speed-up (reducing HRM as Flash-Atte

Model	5th EP	10th Ep	20th Ep	50th Ep	300th
ConvNeXt	29.9	53.5	66.1	74.8	8
ConvNeXt	8.5	25.3	51.1	69.1	8
+ softmax	(-21.4)	(-28.2)	(-15.0)	(-5.7)	(-2

Using Softmax in DWConv7×7 degenerating performance

Operator	Runtime (ms)								
Operator	$56 \times 56 \times 128$	$28 \times 28 \times 256$	$14 \times 14 \times 512$	$7 \times 7 \times 10$					
Attention (torch)	30.8 / 19.3	3.35 / 2.12	0.539 / 0.448	0.446 / 0.1					
FlashAttention-2	N/A / 2.46	N/A / 0.451	N/A / 0.123	N/A / 0.09					
Window Attn (7×7)	4.05 / 1.46	2.07 / 0.770	1.08 / 0.422	0.577 / 0.2					
DWConv $(7 \times 7, torch)$	2.02 / 1.98	1.03 / 1.00	0.515 / 0.523	0.269 / 0.2					
DWConv (7×7 , cuDNN)	0.981 / 0.438	0.522 / 0.267	0.287 / 0.153	0.199 / 0.1					
DCNv3	1.45 / 1.52	0.688 / 0.711	0.294 / 0.298	0.125 / 0.1					
DCNv4	0.606 / 0.404	0.303 / 0.230	0.145 / 0.123	0.0730 / 0.06					

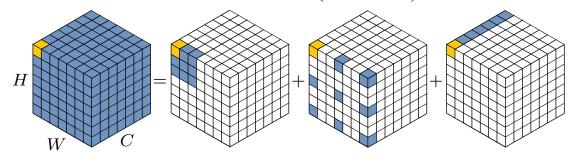
ImageNet-1K Classification

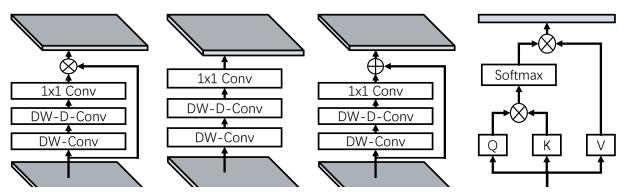
Model	Size	Scale	Acc	Throughput
Swin-T	29M	224^{2}	81.3	1989 / 3619
ConvNeXt-T	29M	224^{2}	82.1	2485 / 4305
InternImage-T	30M	224^{2}	83.5	1409 / 1746
FlashInternImage-T	30M	224^{2}	83.6	2316 / 3154
riasiiiiteiiiiiiage-1	30IVI	224	03.0	(+64%/+80%)
Swin-S	50M	224^{2}	83.0	1167/2000
ConvNeXt-S	50M	224^{2}	83.1	1645/2538
InternImage-S	50M	224^{2}	84.2	1044/1321
FlashInternImage-S	50M	224^{2}	84.4	1625 / 2396

COCO2017 Det. and Seg.

				Cascade Mask R-CNN			
Model	#param	FP	S	1	×	$3\times +$	-MS
				AP^{b}	AP^{m}	AP^{b}	AP^{m}
Swin-L	253M	20 /	26	51.8	44.9	53.9	46.7
ConvNeXt-L	255M	26/	40	53.5	46.4	54.8	47.6
InternImage-L	277M	20 /	26	54.9	47.7	56.1	48.5
ConvNeXt-XL	407M	21/	32	53.6	46.5	55.2	47.7
InternImage-XL	387M	16/	23	55.3	48.1	56.2	48.8
FlashInternImage-L	277M	26 /	39	55.6	48.2	56.7	48.9

Content




- 1. Background: Macro Design and Pre-training MetaFormer, ConvNeXt, ConvNeXt.V2 (SparK, A2MIM)
- 2. Background: Design of Convolution Kernels RepLKNet, SLaK, InceptionNext, DCN.V3/V4, UniRepLKNet
- 3. Combining Large Kernel with Gated Attention VAN, HorNet, FocalNet, MogaNet, Mamba, VMamba, etc.

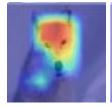
Gating & Large-kernel: VAN

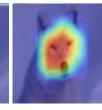
Decomposed large kernel + Gating.

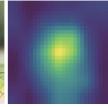
VAN (LKA)

Non-attention Non-attention (add)

Self-attention


Properties	Convolution	Self-Attention	LKA
Local Receptive Field	✓	X	✓
Long-range Dependence	×	✓	✓
Spatial Adaptability	X	✓	✓
Channel Adaptability	X	×	✓
Computational complexity	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$


Properties of DWConv vs. MHSA vs. Large-kernel Attention


Method	K	Dilation	Params. (M)	GFLOPs	Acc(%)
VAN-B0	7	2	4.03	0.85	74.8
VAN-B0	14	33	4.07	0.87	75.3
VAN-B0	21	3	4.11	0.88	75.4
VAN-B0	28	4	4.14	0.90	75.4

Kernel size vs. Dilation vs. ImageNet Acc (%)

 $Conv21\times21 = DWConv5\times5 + DWConv7\times7 + PWConv1\times1$ (Dilation=3)

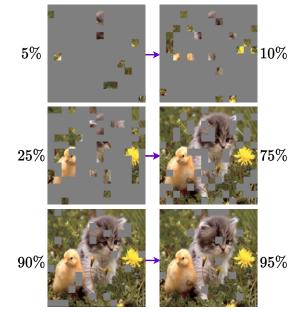
Swin-T ConvNeXt-T Grad-CAM visualization

VAN-B2

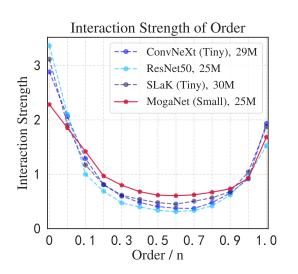
Attention map visualization

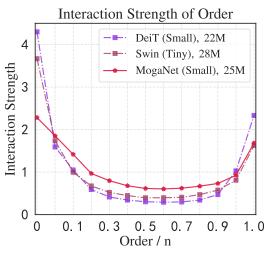
^[1] Visual Attention Network. CVMJ, 2023.

MogaNet: Motivation



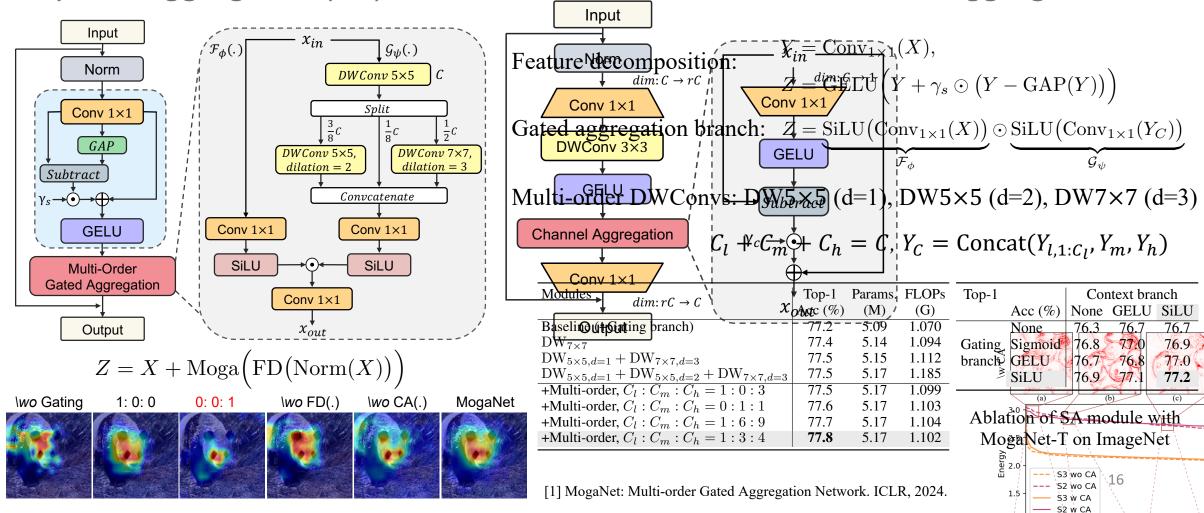
Representation Bottleneck^[1]: Loss in the middle-order interactions.


$$\begin{array}{ll} \text{Multi-order} & I^{(m)}(i,j) = \mathbb{E}_{S \subseteq N \setminus \{i,j\}, |S| = m} [\Delta f(i,j,S)] \\ \text{Interactions} & N = \{1,\dots,n\} & 0 \leq m \geq n-2 \\ & \Delta f(i,j,S) = f(S \cup \{i,j\}) - f(S \cup \{i\}) - f(S \cup \{j\}) + f(S) \end{array}$$


$$\begin{array}{ll} \text{Interaction} \quad J^{(m)} = \frac{\mathbb{E}_{x \in \Omega} \mathbb{E}_{i,j} |I^{(m)}(i,j|x)|}{\mathbb{E}_{m'} \mathbb{E}_{x \in \Omega} \mathbb{E}_{i,j} |I^{(m')}(i,j|x)|} \end{array}$$

- Much new information
- Little new infomation
- Little new information
 Much new infomation
- Much new information
- Little new infomation

Both ViTs and modern CNN architectures fail to explore middle-order interactions, which are informative to humans.



MogaNet: Spatial Aggregation

• Spatial Aggregation (SA): Multi-order context extraction + Gated aggregation.

39.3M

Accuracy vs. MLP Ratio vs. Param.

24.6M

17.3M

+Gating branch

 $+FD(\cdot)$

+SE module

+Multi-order DW(·)

31.9M

MLP

MLP Channel Expand Ratio r

Acc (%)

76.6

77.3

77.5

78.0

78.3

78.6

79.0

MLP w/ SE module

MLP w/ $CA(\cdot)$

Top-1 Params. FLOPs

(M)

4.75

5.09

5.14

5.17

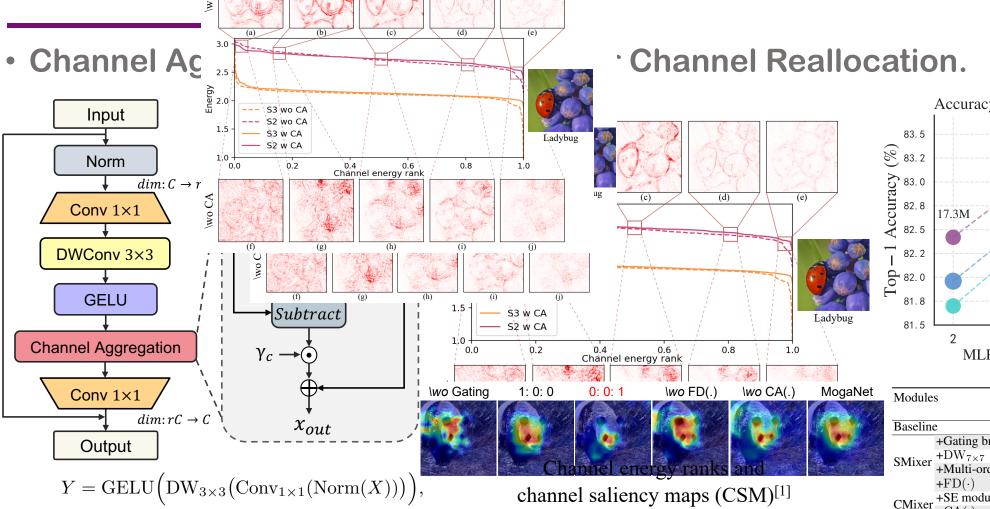
5.18

5.29

5.20

1.07

1.09

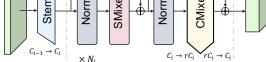

1.10

1.10

1.14

1.10

MogaNet: Channel Aggregation

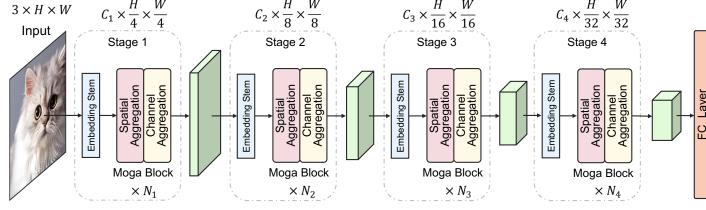


 $Z = \operatorname{Conv}_{1 \times 1}(\operatorname{CA}(Y)) + X.$

$$CA(X) = X + \gamma_c \odot (X - GELU(XW_r))$$

channel saliency maps (CSM)^[1]

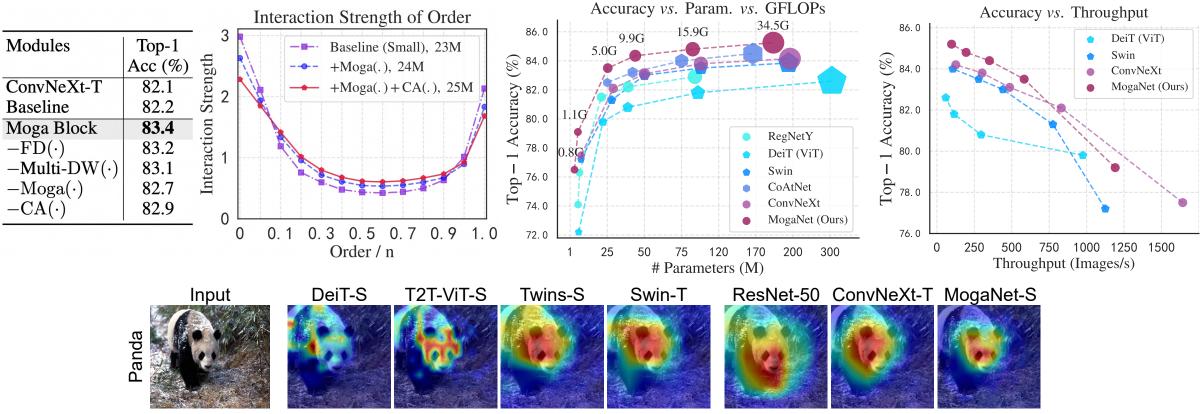
Ablation of MogaNet-S on	n ImageNet
	17


MogaNet: Contigurations

4-stage network designs.

- 3-5M: X-Tiny & Tiny
- 25-50M: Small & Base
- 80-200M: Large & X-Large

Stage	Output	Layer				gaNet			
	Size	Settings						XLarge	
		Stem	Stem $\begin{array}{c} \operatorname{Conv}_{3\times3}, \ \operatorname{stride} \ 2, C/2 \\ \operatorname{Conv}_{3\times3}, \ \operatorname{stride} \ 2, C \end{array}$						
S 1	$\frac{H \times W}{4 \times 4}$	Embed. Dim.	32	32	64	64	64	96	
	1/11	# Moga Block	3	3	2	4	4	6	
		MLP Ratio				8			
		Stem		C	onv _{3×}				
S2	$\frac{H \times W}{8 \times 8}$	Embed. Dim.	64	64	128	160	160	192	
52	8×8	" Woga Block		3	3	6	6	6	
		MLP Ratio	8						
		Stem	Stem $Conv_{3\times 3}$, stride 2						
S3	$\frac{H \times W}{16 \times 16}$	Embed. Dim.	96	128	320	320	320	480	
33	$\overline{16\times16}$	# Moga Block	10	12	12	22	44	44	
		MLP Ratio	4						
		Stem		Co	nv _{3×3}	$_3$, str	ide 2		
S4	$\frac{H \times W}{32 \times 32}$	Embed. Dim.	192	256	512	512	640	960	
34	$\overline{32\times32}$	# Moga Block	2	2	2	3	4	4	
		MLP Ratio				4			
	Clas	sifier	Glo	bal A	verage	Pool	ling, L	inear	
	Parame	eters (M)	2.97	5.20	25.3	43.8	82.5	180.8	
	FLO	Ps (G)	0.80	1.10	4.97	9.93	15.9	34.5	


Configuration	DeiT	RSB			Mog	aNet		
		A2	XT	T	S	В	L	XL
Input resolution	224^{2}	224^{2}			22	4^{2}		
Epochs	300	300			30	00		
Batch size	1024	2048			10	24		
Optimizer	AdamW	LAMB			Ada	mW		
AdamW (β_1, β_2)	0.9, 0.999	-			0.9, 0	0.999		
Learning rate	0.001	0.005			0.0	001		
Learning rate decay	Cosine	Cosine			Cos	sine		
Weight decay	0.05	0.02	0.03	0.04	0.05	0.05	0.05	0.05
Warmup epochs	5	5			4	5		
Label smoothing ϵ	0.1	0.1			0.	.1		
Stochastic Depth	√	/	0.05	0.1	0.1	0.2	0.3	0.4
Rand Augment	9/0.5	7/0.5	7/0.5	7/0.5	9/0.5	9/0.5	9/0.5	9/0.5
Repeated Augment	√	/			7	(
Mixup α	0.8	0.1	0.1	0.1	0.8	0.8	0.8	0.8
CutMix α	1.0	1.0			1.	.0		
Erasing prob.	0.25	X			0.2	25		
ColorJitter	Х	X	Х	X	0.4	0.4	0.4	0.4
Gradient Clipping	/	X			7	(
EMA decay	/	X	Х	X	/	/	/	/
Test crop ratio	0.875	0.95			0.9	90		

Configuration	l IN	N-21K I	PΤ		IN-1	K F	Γ	
	S]	B L	XL	S	В	L	XL	
Input resolution		224^{2}		3842				
Epochs		90			3	0		
Batch size		1024			5	12		
Optimizer		AdamW	I		Ada	mW		
AdamW (β_1, β_2)	0	.9, 0.99	9		0.9, 0	0.999)	
Learning rate	1	$\times 10^{-}$	3		$5 \times$	10^{-5}	5	
Learning rate decay		Cosine		Cosine				
Weight decay	0.05			0.05				
Warmup epochs		5		0				
Label smoothing ϵ		0.2		0.1	0.1	0.2	0.2	
Stochastic Depth	0 0	.1 0.1	0.1	0.4	0.6	0.7	0.8	
Rand Augment		9/0.5			9/	0.5		
Repeated Augment		X		X				
Mixup α		0.8				X		
Cut $\hat{Mix} \alpha$		1.0				Χ		
Erasing prob.	0.25				0.	25		
ColorJitter	0.4			0.4				
Gradient Clipping	X			X				
EMA decay		X		✓				
Test crop ratio		0.90			1	0.		

MogaNet: Ablation and Analysis

- Great scalability and efficiency of parameter usage.
- Relieving representation bottleneck.

MogaNet: ImageNet Classification

Light weight (3-10M)

Architecture	Date	Туре	Image	Param.	FLOPS	Top-1
			Size	(M)	(G)	Acc (%)
ResNet-18	CVPR'2016	С	224^{2}	11.7	1.80	71.5
ShuffleNetV2 2×	ECCV'2018	C	224^{2}	5.5	0.60	75.4
EfficientNet-B0	ICML'2019	C	224^{2}	5.3	0.39	77.1
RegNetY-800MF	CVPR'2020	C	224^{2}	6.3	0.80	76.3
DeiT-T [†]	ICML'2021	T	224^{2}	5.7	1.08	74.1
PVT-T	ICCV'2021	T	224^{2}	13.2	1.60	75.1
T2T-ViT-7	ICCV'2021	T	224^{2}	4.3	1.20	71.7
ViT-C	NIPS'2021	T	224^{2}	4.6	1.10	75.3
$SReT-T_{Distill}$	ECCV'2022	T	224^{2}	4.8	1.10	77.6
PiT-Ti	ICCV'2021	Η	224^{2}	4.9	0.70	74.6
LeViT-S	ICCV'2021	Η	224^{2}	7.8	0.31	76.6
CoaT-Lite-T	ICCV'2021	Η	224^{2}	5.7	1.60	77.5
Swin-1G	ICCV'2021	Η	224^{2}	7.3	1.00	77.3
MobileViT-S	ICLR'2022	Η	256^{2}	5.6	4.02	78.4
MobileFormer-294M	CVPR'2022	Η	224^{2}	11.4	0.59	77.9
ConvNext-XT	CVPR'2022	C	224^{2}	7.4	0.60	77.5
VAN-B0	CVMJ'2023	C	224^{2}	4.1	0.88	75.4
ParC-Net-S	ECCV'2022	C	256^{2}	5.0	3.48	78.6
MogaNet-XT	Ours	C	256^{2}	3.0	1.04	77.2
MogaNet-T	Ours	C	224^{2}	5.2	1.10	79.0
MogaNet-T§	Ours	C	256^{2}	5.2	1.44	80.0

Architecture	Input	Learning	Warmup	Rand	3-Augment	EMA	Top-1
	size	rate	epochs	Augment			Acc (%)
MogaNet-XT			5	7/0.5	Х	Х	76.5
MogaNet-XT	224^{2}	2×10^{-3}	20	X	1	X	77.1
MogaNet-XT			5	7/0.5	Х	X	77.2
MogaNet-XT			20	X	✓	X	77.6
MogaNet-T			5	7/0.5	Х	X	79.0
MogaNet-T	224^{2}	2×10^{-3}	20	X	✓	X	79.4
MogaNet-T	256^{2}	1×10^{-3}	5	7/0.5	Х	X	79.6
MogaNet-T	256^{2}	2×10^{-3}	20	Х	✓	Х	80.0

Normal size (25-50M)

Architecture	Date	Туре	Image	Param.	FLOPs	Top-1
		• •	Size	(M)	(G)	Acc (%)
Deit-S	ICML'2021	T	224^{2}	22	4.6	79.8
Swin-T	ICCV'2021	T	224^{2}	28	4.5	81.3
CSWin-T	CVPR'2022	T	224^{2}	23	4.3	82.8
LITV2-S	NIPS'2022	T	224^{2}	28	3.7	82.0
CoaT-S	ICCV'2021	Η	224^{2}	22	12.6	82.1
CoAtNet-0	NIPS'2021	Η	224^{2}	25	4.2	82.7
UniFormer-S	ICLR'2022	Η	224^{2}	22	3.6	82.9
RegNetY-4GF [†]	CVPR'2020	C	224^{2}	21	4.0	81.5
ConvNeXt-T	CVPR'2022	C	224^{2}	29	4.5	82.1
SLaK-T	ICLR'2023	C	224^{2}	30	5.0	82.5
HorNet- $T_{7\times7}$	NIPS'2022	C	224^{2}	22	4.0	82.8
MogaNet-S	Ours	C	224^{2}	25	5.0	83.4
Swin-S	ICCV'2021	T	224^{2}	50	8.7	83.0
Focal-S	NIPS'2021	T	224^{2}	51	9.1	83.6
CSWin-S	CVPR'2022	T	224^{2}	35	6.9	83.6
LITV2-M	NIPS'2022	T	224^{2}	49	7.5	83.3
CoaT-M	ICCV'2021	Η	224^{2}	45	9.8	83.6
CoAtNet-1	NIPS'2021	Η	224^{2}	42	8.4	83.3
UniFormer-B	ICLR'2022	Η	224^{2}	50	8.3	83.9
FAN-B-Hybrid	ICML'2022	Η	224^{2}	50	11.3	83.9
EfficientNet-B6	ICML'2019	C	528^{2}	43	19.0	84.0
RegNetY-8GF [†]	CVPR'2020	C	224^{2}	39	8.1	82.2
ConvNeXt-S	CVPR'2022	C	224^{2}	50	8.7	83.1
FocalNet-S (LRF)	NIPS'2022	C	224^{2}	50	8.7	83.5
HorNet-S _{7×7}	NIPS'2022	C	224^{2}	50	8.8	84.0
SLaK-S	ICLR'2023	C	224^{2}	55	9.8	83.8
MogaNet-B	Ours	С	224^{2}	44	9.9	84.3

Training and inference at the resolution of 224² or 256².

Large size (80-200M)

DeiT-B	ICML'2021	T	224^{2}	86	17.5	81.8
Swin-B	ICCV'2021	T	224^{2}	89	15.4	83.5
Focal-B	NIPS'2021	T	224^{2}	90	16.4	84.0
CSWin-B	CVPR'2022	T	224^{2}	78	15.0	84.2
DeiT III-B	ECCV'2022	T	224^{2}	87	18.0	83.8
BoTNet-T7	CVPR'2021	Η	256^{2}	79	19.3	84.2
CoAtNet-2	NIPS'2021	Η	224^{2}	75	15.7	84.1
FAN-B-Hybrid	ICML'2022	Η	224^{2}	77	16.9	84.3
RegNetY-16GF	CVPR'2020	C	224^{2}	84	16.0	82.9
ConvNeXt-B	CVPR'2022	C	224^{2}	89	15.4	83.8
RepLKNet-31B	CVPR'2022	C	224^{2}	79	15.3	83.5
FocalNet-B (LRF)	lNet-B (LRF) NIPS'2022			89	15.4	83.9
HorNet-B _{7×7}	NIPS'2022	C	224^{2}	87	15.6	84.3
SLaK-B	ICLR'2023	C	224^{2}	95	17.1	84.0
MogaNet-L	Ours	C	224^{2}	83	15.9	84.7
Swin-L [‡]	ICCV'2021	T	384^{2}	197	104	87.3
DeiT III-L [‡]	ECCV'2022	T	384^{2}	304	191	87.7
CoAtNet-3 [‡]	NIPS'2021	Η	384^{2}	168	107	87.6
RepLKNet-31L [‡]	CVPR'2022	C	384^{2}	172	96	86.6
ConvNeXt-L	CVPR'2022	C	224^{2}	198	34.4	84.3
ConvNeXt-L [‡]	CVPR'2022	C	384^{2}	198	101	87.5
ConvNeXt-XL [‡]	CVPR'2022	C	384^{2}	350	179	87.8
HorNet-L [‡]	NIPS'2022	C	384^{2}	202	102	87.7
MogaNet-XL	Ours	C	224^{2}	181	34.5	85.1
MogaNet-XL [‡]	Ours	C	384^{2}	181	102	87.8
0						

Architecture	Date	Type	Param.	100-ep	och	300-ер	och
			(M)	Train Test	Acc (%)	Train Test	Acc (%)
ConvNeXt-T (Liu et al., 2022b)	CVPR'2022	С	29	160 ² 224 ²	78.8	2242 2242	82.1
ConvNeXt-S (Liu et al., 2022b)	CVPR'2022	C	50	$160^2 \ 224^2$	81.7	224^2 224^2	83.1
ConvNeXt-B (Liu et al., 2022b)	CVPR'2022	C	89	$160^2 \ 224^2$	82.1	224^2 224^2	83.8
ConvNeXt-L (Liu et al., 2022b)	CVPR'2022	C	189	$160^2 \ 224^2$		224^2 224^2	84.3
ConvNeXt-XL (Liu et al., 2022b)	CVPR'2022	C	350	$160^2 \ 224^2$	82.9	$224^2 \ 224^2$	84.5
HorNet-T _{7×7} (Rao et al., 2022)	NIPS'2022	C	22	$160^2 \ 224^2$	80.1	$224^2 \ 224^2$	82.8
HorNet-S _{7×7} (Rao et al., 2022)	NIPS'2022	C	50	$160^2 \ 224^2$	81.2	224^2 224^2	84.0
VAN-B0 (Guo et al., 2023)	CVMJ'2023	C	4	$160^2 \ 224^2$	72.6	$224^2 \ 224^2$	75.8
VAN-B2 (Guo et al., 2023)	CVMJ'2023	C	27	$160^2 \ 224^2$	81.0	224^2 224^2	82.8
VAN-B3 (Guo et al., 2023)	CVMJ'2023	C	45	$160^2 \ 224^2$	81.9	224^2 224^2	83.9
MogaNet-XT	Ours	C	3	$160^2 \ 224^2$	72.8	$224^2 \ 224^2$	76.5
MogaNet-T	Ours	C	5	$160^2 \ 224^2$	75.4	$224^2 \ 224^2$	
MogaNet-S	Ours	C	25	$160^2 \ 224^2$	81.1	224^2 224^2	
MogaNet-B	Ours	C	44	$160^2 \ 224^2$	82.2	2242 2242	84.3
MogaNet-L	Ours	C	83	$160^2 \ 224^2$	83.2	224^2 224^2	84.7

Architecture

RetinaNet $(1\times)$

Architecture	Type	#P.	FLOPs			Retinal			
		(M)	(G)	AP	AP_{50}	AP_{75}	AP^S	AP_M	AP_L
RegNet-800M	С	17	168	35.6	54.7	37.7	19.7	390	47.8
PVTV2-B0	T	13	160	37.1	57.2	39.2	23.4	40.4	49.2
MogaNet-XT	C	12	167	39.7	60.0	42.4	23.8	43.6	51.7
ResNet-18	С	21	189	31.8	49.6	33.6	16.3	34.3	43.2
RegNet-1.6G	C	20	185	37.4	56.8	39.8	22.4	41.1	49.2
RegNet-3.2G	C	26	218	39.0	58.4	41.9	22.6	43.5	50.8
PVT-T	T	23	183	36.7	56.9	38.9	22.6	38.8	50.0
PoolFormer-S12	T	22	207	36.2	56.2	38.2	20.8	39.1	48.0
PVTV2-B1	T	24	187	41.1	61.4	43.8	26.0	44.6	54.6
MogaNet-T	C	14	173	41.4	61.5	44.4	25.1	45.7	53.6
ResNet-50	С	37	239	36.3	55.3	38.6	19.3	40.0	48.8
Swin-T	T	38	245	41.8	62.6	44.7	25.2	45.8	54.7
PVT-S	T	34	226	40.4	61.3	43.0	25.0	42.9	55.7
Twins-SVT-S	T	34	209	42.3	63.4	45.2	26.0	45.5	56.5
Focal-T	T	39	265	43.7	-	-	-	-	-
PoolFormer-S36	T	41	272	39.5	60.5	41.8	22.5	42.9	52.4
PVTV2-B2	T	35	281	44.6	65.7	47.6	28.6	48.5	59.2
CMT-S	Н	45	231	44.3	65.5	47.5	27.1	48.3	59.1
MogaNet-S	C	35	253	45.8	66.6	49.0	29.1	50.1	59.8
ResNet-101	С	57	315	38.5	57.8	41.2	21.4	42.6	51.1
PVT-M	T	54	258	41.9	63.1	44.3	25.0	44.9	57.6
Focal-S	T	62	367	45.6	-	-	-	-	-
PVTV2-B3	T	55	263	46.0	67.0	49.5	28.2	50.0	61.3
PVTV2-B4	T	73	315	46.3	67.0	49.6	29.0	50.1	62.7
MogaNet-B	C	54	355	47.7	68.9	51.0	30.5	52.2	61.7
ResNeXt-101-64	С	95	473	41.0	60.9	44.0	23.9	45.2	54.0
PVTV2-B5	T	92	335	46.1	66.6	49.5	27.8	50.2	62.0
MogaNet-L	С	92	477	48.7	69.5	52.6	31.5	53.4	62.7

Inference input size 800×1280

Mask R-CNN $(1\times)$

Mask R-CNN 1×

Type #P. FLOPs

	TJPC								
		(M)	(G)	AP^b	AP^b_{50}	AP_{75}^b	AP^m	AP_{50}^m	AP_{75}^m
RegNet-800M	С	27	187	37.5	57.9	41.1	34.3	56.0	36.8
MogaNet-XT	C	23	185	40.7	62.3	44.4	37.6	59.6	40.2
ResNet-18	С	31	207	34.0	54.0	36.7	31.2	51.0	32.7
RegNet-1.6G	C	29	204	38.9	60.5	43.1	35.7	57.4	38.9
PVT-T	T	33	208	36.7	59.2	39.3	35.1	56.7	37.3
PoolFormer-S12	T	32	207	37.3	59.0	40.1	34.6	55.8	36.9
MogaNet-T	C	25	192	42.6	64.0	46.4	39.1	61.3	42.0
ResNet-50	С	44	260	38.0	58.6	41.4	34.4	55.1	36.7
RegNet-6.4G	C	45	307	41.1	62.3	45.2	37.1	59.2	39.6
PVT-S	T	44	245	40.4	62.9	43.8	37.8	60.1	40.3
Swin-T	T	48	264	42.2	64.6	46.2	39.1	61.6	42.0
MViT-T	T	46	326	45.9	68.7	50.5	42.1	66.0	45.4
PoolFormer-S36	T	32	207	41.0	63.1	44.8	37.7	60.1	40.0
Focal-T	T	49	291	44.8	67.7	49.2	41.0	64.7	44.2
PVTV2-B2	T	45	309	45.3	67.1	49.6	41.2	64.2	44.4
LITV2-S	T	47	261	44.9	67.0	49.5	40.8	63.8	44.2
CMT-S	Η	45	249	44.6	66.8	48.9	40.7	63.9	43.4
Conformer-S/16	Н	58	341	43.6	65.6	47.7	39.7	62.6	42.5
Uniformer-S	Н	41	269	45.6	68.1	49.7	41.6	64.8	45.0
ConvNeXt-T	C	48	262	44.2	66.6	48.3	40.1	63.3	42.8
FocalNet-T (SRF)	C	49	267	45.9	68.3	50.1	41.3	65.0	44.3
FocalNet-T (LRF)	C	49	268	46.1	68.2	50.6	41.5	65.1	44.5
MogaNet-S	C	45	272	46.7	68.0	51.3	42.2	65.4	45.5
ResNet-101	С	63	336	40.4	61.1	44.2	36.4	57.7	38.8
RegNet-12G	C	64	423	42.2	63.7	46.1	38.0	60.5	40.5
PVT-M	T	64	302	42.0	64.4	45.6	39.0	61.6	42.1
Swin-S	T	69	354	44.8	66.6	48.9	40.9	63.4	44.2
Focal-S	T	71	401	47.4	69.8	51.9	42.8	66.6	46.1
PVTV2-B3	T	65	397	47.0	68.1	51.7	42.5	65.7	45.7
LITV2-M	T	68	315	46.5	68.0	50.9	42.0	65.1	45.0
UniFormer-B	Н	69	399	47.4	69.7	52.1	43.1	66.0	46.5
ConvNeXt-S	C	70	348	45.4	67.9	50.0	41.8	65.2	45.1
MogaNet-B	C	63	373	47.9	70.0	52.7	43.2	67.0	46.6
Swin-B	T	107	496	46.9	69.6	51.2	42.3	65.9	45.6
PVTV2-B5	T	102	557	47.4	68.6	51.9	42.5	65.7	46.0
ConvNeXt-B	C	108	486	47.0	69.4	51.7	42.7	66.3	46.0
FocalNet-B (SRF) MogaNet-L	C	109 102	496	48.8	70.7 70.7	53.5	43.3	67.5	46.5
			495	49.4		54.1	44.1	68.1	47.6

Cascade Mask R-CNN $(3\times)$

Architecture	Type	#P.	FLOPs		ascade	Mask F	R-CNN	+MS 3	×
		(M)	(G)	AP^{bb}	AP^b_{50}	AP^b_{75}	AP^m	AP^m_{50}	AP_{75}^m
ResNet-50	С	77	739	46.3	64.3	50.5	40.1	61.7	43.4
Swin-T	T	86	745	50.4	69.2	54.7	43.7	66.6	47.3
Focal-T	T	87	770	51.5	70.6	55.9	-	-	-
ConvNeXt-T	C	86	741	50.4	69.1	54.8	43.7	66.5	47.3
FocalNet-T (SRF)	C	86	746	51.5	70.1	55.8	44.6	67.7	48.4
MogaNet-S	C	78	750	51.6	70.8	56.3	45.1	68.7	48.8
ResNet-101-32	С	96	819	48.1	66.5	52.4	41.6	63.9	45.2
Swin-S	T	107	838	51.9	70.7	56.3	45.0	68.2	48.8
ConvNeXt-S	C	108	827	51.9	70.8	56.5	45.0	68.4	49.1
MogaNet-B	C	101	851	52.6	72.0	57.3	46.0	69.6	49.7
Swin-B	T	145	982	51.9	70.5	56.4	45.0	68.1	48.9
ConvNeXt-B	C	146	964	52.7	71.3	57.2	45.6	68.9	49.5
MogaNet-L	C	140	974	53.3	71.8	57.8	46.1	69.2	49.8
Swin-L [‡]	T	253	1382	53.9	72.4	58.8	46.7	70.1	50.8
ConvNeXt-L [‡]	C	255	1354	54.8	73.8	59.8	47.6	71.3	51.7
ConvNeXt-XL [‡]	C	407	1898	55.2	74.2	59.9	47.7	71.6	52.2
RepLKNet-31L [‡]	C	229	1321	53.9	72.5	58.6	46.5	70.0	50.6
HorNet-L [‡]	C	259	1399	56.0	-	-	48.6	-	-
MogaNet-XL [‡]	С	238	1355	56.2	75.0	61.2	48.8	72.6	53.3

- Object Detection: RetinaNet.
- Instance Segmentation: (Cascade)
 Mask R-CNN.
- Multi-scale fine-tuning with IN-21K pre-trained models.
- Codebase: MMDetection.

ADE20K Semantic FPN (80K)

Method	Architecture	Date	Crop	Param.	FLOPs	$mIoU^{ss}$
			size	(M)	(G)	(%)
	PVT-S	ICCV'2021	512^{2}	28	161	39.8
Semantic	Twins-S	NIPS'2021	512^{2}	28	162	44.3
FPN	Swin-T	ICCV'2021	512^{2}	32	182	41.5
(80K)	Uniformer-S	ICLR'2022	512^{2}	25	247	46.6
	LITV2-S	NIPS'2022	512^{2}	31	179	44.3
	VAN-B2	CVMJ'2023	512^{2}	30	164	46.7
	MogaNet-S	Ours	512^{2}	29	189	47.7

MogaNet + Semantic FPN

Method	Backbone	Pretrain	Params	FLOPs	Iters	mloU	mAcc
Semantic FPN	MogaNet-XT	ImageNet-1K	6.9M	101.4G	80K	40.3	52.4
Semantic FPN	MogaNet-T	ImageNet-1K	9.1M	107.8G	80K	43.1	55.4
Semantic FPN	MogaNet-S	ImageNet-1K	29.1M	189.7G	80K	47.7	59.8
Semantic FPN	MogaNet-B	ImageNet-1K	47.5M	293.6G	80K	49.3	61.6
Semantic FPN	MogaNet-L	ImageNet-1K	86.2M	418.7G	80K	50.2	63.0

- Semantic FPN (80K) with 512×2048 inference sizes.
- UperNet (160K) with 512×2048 or 640×2560 inference resolutions using IN-1K or IN-21K models.
- Codebase: MMSegmentation.

ADE20K UperNet (160K)

Architecture	Date	Type	Crop	Param.	FLOPs	$mIoU^{ss}$
			size	(M)	(G)	(%)
ResNet-18	CVPR'2016	С	512 ²	41	885	39.2
MogaNet-XT	Ours	C	512^{2}	30	856	42.2
ResNet-50	CVPR'2016	С	512 ²	67	952	42.1
MogaNet-T	Ours	C	512^{2}	33	862	43.7
DeiT-S	ICML'2021	T	512^{2}	52	1099	44.0
Swin-T	ICCV'2021	T	512^{2}	60	945	46.1
TwinsP-S	NIPS'2021	T	512^{2}	55	919	46.2
Twins-S	NIPS'2021	T	512^{2}	54	901	46.2
Focal-T	NIPS'2021	T	512^{2}	62	998	45.8
Uniformer-S _{h32}	ICLR'2022	Η	512^{2}	52	955	47.0
UniFormer-S	ICLR'2022	Η	512^{2}	52	1008	47.6
ConvNeXt-T	CVPR'2022	C	512^{2}	60	939	46.7
FocalNet-T (SRF)	NIPS'2022	C	512^{2}	61	944	46.5
HorNet- $T_{7\times7}$	NIPS'2022	C	512^{2}	52	926	48.1
MogaNet-S	Ours	C	512^{2}	55	946	49.2
Swin-S	ICCV'2021	T	512^{2}	81	1038	48.1
Twins-B	NIPS'2021	T	512^{2}	89	1020	47.7
Focal-S	NIPS'2021	T	512^{2}	85	1130	48.0
Uniformer-B _{h32}	ICLR'2022	Н	512^{2}	80	1106	49.5
ConvNeXt-S	CVPR'2022	C	512^{2}	82	1027	48.7
FocalNet-S (SRF)	NIPS'2022	C	512^{2}	83	1035	49.3
SLaK-S	ICLR'2023	C	512^{2}	91	1028	49.4
MogaNet-B	Ours	C	512^{2}	74	1050	50.1
Swin-B	ICCV'2021	Т	512^{2}	121	1188	49.7
Focal-B	NIPS'2021	T	512^{2}	126	1354	49.0
ConvNeXt-B	CVPR'2022	C	512^{2}	122	1170	49.1
RepLKNet-31B	CVPR'2022	C	512^{2}	112	1170	49.9
FocalNet-B (SRF)	NIPS'2022	C	512^{2}	124	1180	50.2
SLaK-B	ICLR'2023	C	512^{2}	135	1185	50.2
MogaNet-L	Ours	C	512^{2}	113	1176	50.9
Swin-L [‡]	ICCV'2021	T	640^{2}	234	2468	52.1
ConvNeXt-L [‡]	CVPR'2022	C	640^{2}	245	2458	53.7
RepLKNet-31L [‡]	CVPR'2022	C	640^{2}	207	2404	52.4
MogaNet-XL [‡]	Ours	C	640^{2}	214	2451	54.0

COCO 2D Human Pose with TopDown baseline (256×192)

Architecture	Type	Crop	#P.	FLOPs	AP	AP^{50}	AP^{75}	AR
		size	(M)	(G)	(%)	(%)	(%)	(%)
MobileNetV2	С	256×192	10	1.6	64.6	87.4	72.3	70.7
ShuffleNetV2 2×	C	256×192	8	1.4	59.9	85.4	66.3	66.4
MogaNet-XT	C	256×192	6	1.8	72.1	89.7	80.1	77.7
RSN-18	С	256×192	9	2.3	70.4	88.7	77.9	77.1
MogaNet-T	C	256×192	8	2.2	73.2	90.1	81.0	78.8
ResNet-50	С	256×192	34	5.5	72.1	89.9	80.2	77.6
HRNet-W32	C	256×192	29	7.1	74.4	90.5	81.9	78.9
Swin-T	T	256×192	33	6.1	72.4	90.1	80.6	78.2
PVT-S	T	256×192	28	4.1	71.4	89.6	79.4	77.3
PVTV2-B2	T	256×192	29	4.3	73.7	90.5	81.2	79.1
Uniformer-S	Η	256×192	25	4.7	74.0	90.3	82.2	79.5
ConvNeXt-T	C	256×192	33	5.5	73.2	90.0	80.9	78.8
MogaNet-S	C	256×192	29	6.0	74.9	90.7	82.8	80.1
ResNet-101	С	256×192	53	12.4	71.4	89.3	79.3	77.1
ResNet-152	C	256×192	69	15.7	72.0	89.3	79.8	77.8
HRNet-W48	C	256×192	64	14.6	75.1	90.6	82.2	80.4
Swin-B	T	256×192	93	18.6	72.9	89.9	80.8	78.6
Swin-L	T	256×192	203	40.3	74.3	90.6	82.1	79.8
Uniformer-B	Н	256×192	54	9.2	75.0	90.6	83.0	80.4
ConvNeXt-S	C	256×192	55	9.7	73.7	90.3	81.9	79.3
ConvNeXt-B	C	256×192	94	16.4	74.0	90.7	82.1	79.5
MogaNet-B	C	256×192	47	10.9	75.3	90.9	83.3	80.7

Architecture	Type	Crop size	#P. (M)	FLOPs (G)	AP (%)	AP ⁵⁰ (%)	AP ⁷⁵ (%)	AR (%)
MobileNetV2	C	384×288	10	3.6	67.3	87.9	74.3	72.9
ShuffleNetV2 2×	Č	384×288	8	3.1	63.6	86.5	70.5	69.7
MogaNet-XT	C	384×288	6	4.2	74.7	90.1	81.3	79.9
RSN-18	С	384×288	9	5.1	72.1	89.5	79.8	78.6
MogaNet-T	C	384×288	8	4.9	75.7	90.6	82.6	80.9
HRNet-W32	С	384×288	29	16.0	75.8	90.6	82.7	81.0
Uniformer-S	Н	384×288	25	11.1	75.9	90.6	83.4	81.4
ConvNeXt-T	C	384×288	33	33.1	75.3	90.4	82.1	80.5
MogaNet-S	C	384×288	29	13.5	76.4	91.0	83.3	81.4
ResNet-152	С	384×288	69	35.6	74.3	89.6	81.1	79.7
HRNet-W48	C	384×288	64	32.9	76.3	90.8	82.0	81.2
Swin-B	T	384×288	93	39.2	74.9	90.5	81.8	80.3
Swin-L	T	384×288	203	86.9	76.3	91.2	83.0	814
HRFormer-B	T	384×288	54	30.7	77.2	91.0	83.6	82.0
ConvNeXt-S	C	384×288	55	21.8	75.8	90.7	83.1	81.0
ConvNeXt-B	C	384×288	94	36.6	75.9	90.6	83.1	81.1
Uniformer-B	C	384×288	54	14.8	76.7	90.8	84.0	81.4
MogaNet-B	C	384×288	47	24.4	77.3	91.4	84.0	82.2

COCO 2D Human Pose with	
TopDown baseline (384×288)	

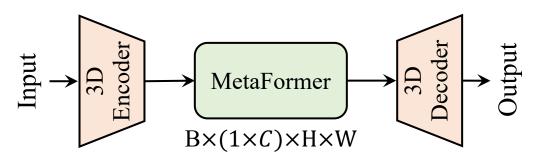
Architecture			Har	nd	Face			
	Type	#P. FLOPs		PA-MPJPE	#P.	FLOPs	3DRMSE	
		(M)	(G)	(mm)↓	(M)	(G)	\downarrow	
MobileNetV2	С	4.8	0.3	8.33	4.9	0.4	2.64	
ResNet-18	C	13.0	1.8	7.51	13.1	2.4	2.40	
MogaNet-T	C	6.5	1.1	6.82	6.6	1.5	2.36	
ResNet-50	С	26.9	4.1	6.85	27.0	5.4	2.48	
ResNet-101	C	45.9	7.9	6.44	46.0	10.3	2.47	
DeiT-S	T	23.4	4.3	7.86	23.5	5.5	2.52	
Swin-T	T	30.2	4.6	6.97	30.3	6.1	2.45	
Swin-S	T	51.0	13.8	6.50	50.9	8.5	2.48	
ConvNeXt-T	C	29.9	4.5	6.18	30.0	5.8	2.34	
ConvNeXt-S	C	51.5	8.7	6.04	51.6	11.4	2.27	
HorNet-T	C	23.7	4.3	6.46	23.8	5.6	2.39	
MogaNet-S	C	26.6	5.0	6.08	26.7	6.5	2.24	

3D Human Pose with Expose

• 3D Face: FFHQ (256²)

• 3D Hand: FreiHand (224²)

Codebase: MMPose


MogaNet: Video Prediction

Moving MNIST $(10 \times 1 \times 64 \times 64)$

Architecture	#P.	FLOPs	FPS	200 epochs			2000 epochs		
	(M)	(G)	(s)	MSE↓	MĀE↓	SSIM↑	MSE↓	MAE↓	SSIM↑
ViT	46.1	16.9	290	35.15	95.87	0.9139	19.74	61.65	0.9539
Swin	46.1	16.4	294	29.70	84.05	0.9331	19.11	59.84	0.9584
Uniformer	44.8	16.5	296	30.38	85.87	0.9308	18.01	57.52	0.9609
MLP-Mixer	38.2	14.7	334	29.52	83.36	0.9338	18.85	59.86	0.9589
ConvMixer	3.9	5.5	658	32.09	88.93	0.9259	22.30	67.37	0.9507
Poolformer	37.1	14.1	341	31.79	88.48	0.9271	20.96	64.31	0.9539
SimVP	58.0	19.4	209	32.15	89.05	0.9268	21.15	64.15	0.9536
ConvNeXt	37.3	14.1	344	26.94	77.23	0.9397	17.58	55.76	0.9617
VAN	44.5	16.0	288	26.10	76.11	0.9417	16.21	53.57	0.9646
HorNet	45.7	16.3	287	29.64	83.26	0.9331	17.40	55.70	0.9624
MogaNet	46.8	16.5	255	25.57	75.19	0.9429	15.67	51.84	0.9661

- Replacing the MetaFormer blocks in SimVP.
- Comparison with MMNIST and MMNIST-CIFAR.

Moving MNIST-CIFAR $(10\times3\times64\times64)$

Method		Params (M)	FLOPs (G)	FPS	MSE ↓	MAE↓	SSIM ↑	PSNR ↑
	ConvLSTM	15.0	56.8	113	73.31	338.56	0.9204	23.09
Recurrent-based	PredNet	12.5	8.4	659	286.70	514.14	0.8139	17.49
	PredRNN	23.8	116.0	54	50.09	225.04	0.9499	24.90
	PredRNN++	38.6	171.7	38	44.19	198.27	0.9567	25.60
	MIM	38.0	179.2	37	48.63	213.44	0.9521	25.08
	E3D-LSTM	51.0	298.9	18	80.79	214.86	0.9314	22.89
	PhyDNet	3.1	15.3	182	142.54	700.37	0.8276	19.92
	MAU	4.5	17.8	201	58.84	255.76	0.9408	24.19
	PredRNNv2	23.9	116.6	52	57.27	252.29	0.9419	24.24
	DMVFN	3.5	0.2	1145	298.73	606.92	0.7765	17.07
	SimVP	58.0	19.4	209	59.83	214.54	0.9414	24.15
Recurrent-free	TAU	44.7	16.0	283	48.17	177.35	0.9539	25.21
	SimVPv2	46.8	16.5	282	51.13	185.13	0.9512	24.93
	ViT	46.1	16.9	290	64.94	234.01	0.9354	23.90
	Swin Transformer	46.1	16.4	294	57.11	207.45	0.9443	24.34
	Uniformer	44.8	16.5	296	56.96	207.51	0.9442	24.38
	MLP-Mixer	38.2	14.7	334	57.03	206.46	0.9446	24.34
	ConvMixer	3.9	5.5	658	59.29	219.76	0.9403	24.17
	Poolformer	37.1	14.1	341	60.98	219.50	0.9399	24.16
	ConvNext	37.3	14.1	344	51.39	187.17	0.9503	24.89
	VAN	44.5	16.0	288	59.59	221.32	0.9398	25.20
	HorNet	45.7	16.3	_287 _	55.79	202.73	0.9456	24.49
	MogaNet	46.8	16.5	255	49.48	184.11	0.9521	25.07

Codebase: OpenSTL.

[1] OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning. NeurIPS, 2023.

Thank you!

Paper: MogaNet

Source Code: MogaNet

Homepage

lisiyuan@westlake.edu.cn