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Vulnerability of Data-driven ML Models

* Vulnerability to adversarial perturbations
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Certified Robustness & Conformal Prediction
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Conformal Prediction (CP)

* n calibration samples {(X;,¥,)}~, where X; e X = R%,Y; € Y =
{1,2, ..., C}, pretrained model : R% - AC, desired coverage level
1 — a € [0,1], prediction set of test sample: €, o (X;41)

* Non-conformity score of sample: S=(X;,Y;) € [0,1]
* Measures how much non-conformity each sample has regarding the ground
truth label

° Eg/ Sﬁ-(x, 3’) = 1 _ ﬁy(x)
* Conformal prediction guarantee:
* P|Yp11 € Croa(Xns1)| = 1 — a, where

CrnaXns1) = {¥ € Y:Sa(Xnt1,Y) < Q1- o ({S2 (X1, Yi)}i=1)}, where
Q1- 4(+) computes the 1 — a empirical quantile value



Conformal Prediction (CP)

(Test sample X;,41)

Conformal Prediction set
Model —— CraXn+1):
T {Dog, River, Tree}

Quantile estimati / Conformal guarantee:
uantile estimation
g IP)[Yn+1 S Cn,o:(Xn+1)] =21l-a
a
on calibration set

* Requirement: test distribution is to the calibration
distribution

* Conformal guarantee is broken in the adversary setting

* The adversary can add imperceptible noises to the test sample during
inference time



Standard CP is broken with adversary

Table I: Marginal coverage under £, attack on GTSRB. The benign coverage is 0.9.

Standard CP 0.3118 0.0484 0.0028
Smoothing CP 0.8306 0.7504 0.5478
COLEP (ours) 0.9508 0.9324 0.8804

e Data-driven conformal model is vulnerable
* COLEP (ours):

* Certifiably Robust Learning-Reasoning Conformal Prediction via Probabilistic
Circuits

* Integrate domain knowledge into the conformal prediction framework



Learning-reasoning CP framework via
orobabilistic circuit (PC)

PC (Shape Knowledge)
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Learning-reasoning CP framework

PC (Shape Knowledge)

Stop sign is octagon: IsStopSign=1sOctagon (with weight w) ) S o
IsStopSign: Bernoulli random variable with success rate Model —®\
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The likehood p(IsStopSign = 1, IsOctagon = 0) is down-weighted by the correction of the knowledge rule.

Marginal Probability:
p(IsStopSign=1,IsOctagon=0)+p(IsStopSign=1,IsOctagon=1)

p(IsStopSign=0,IsOctagon=0)+p(IsStopSign=0,IsOctagon=1)+p(IsStopSign=1,IsOctagon=0)+p(IsStopSign=1,IsOctagon=1)

p(IsStopSign = 1) =

Time complexity linear to the size of PC graph ’
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* Formally:
consider N, class labels (main model) and L knowledge labels (knowledge models)
ueM = {0,1}NetL: 3 possible assignment
Oroot(1): output of PC given u, indicating likelihood of assignment u
F(u) = exp{Zﬁzl Wh]I[,u~Kh]}: factor function, where Kj,is the h-th rule with weight wy,
I[u~Ky] = 1 if assignment u satisfies knowledge rule Kj,
let T(a,b) = log(ab +(1—-a)(1 - b))

Z/,LeM nj=1 Oroot(li) ZueM uj=1 ex p{ Nc_lL (ﬁ 1 (x), Mo )}F([,L)

7 COLEP (4 —

j % en Oroot () Epem exp{ZN (R o)l



Learning-reasoning CP framework @ =i

* Conformal prediction with probability estimator ﬁjCOLEP

* Step 1: class-wise conformal prediction
~COLEP;

Cuay * Cnn) = {0 € (013 Spgoner (X1, ) < Qug ({Spgorer (X 1Y =D} )
L€Jcal
e Step 2: Final prediction set
R _ A~COLEP;
CEIEP (Knyr) = € INT: 1 € Gy (X))
* Recall the conformal guarantee:
P|Y41 € CRA"EP (Xp1)| 21— @

* Problem:
* Conformal guarantee is broken with adversary X,,,1 = X,,41+¢€

 Question:



Certifiably robust learning-reasoning CP

PC (Shape Knowledge)

* Inference stage: T
* Learning component: j /g @%
« Compute class probability & for the main model and — X 4
‘ NN //’ s
knowledge models @z —
e \ - ~“*\\‘ Color K%)wlede
* Reasoning component: Qﬁ‘—”
» Compute corrected class probability 7t COLEP e

* Conformal prediction:
 Compute final prediction set using 7t “OLEP

* Certification Goal:
* For adversary X,,.1 = X,,+1+& with ||g]| < &, construct and certify the
prediction set with the desired coverage 1 — a.



Certification framework in COLEP

 End-to-end certification framework

* Robustness certification of the learning component
* Probabilistic certification: randomized smoothing
* Deterministic certification: bound propagation approaches (e.g., CROWN-IBP)
* Robustness certification framework of the reasoning component (PC)
* Theorem 1
* Certification of conformal prediction  standard rediction set (eq. (5y) _ Lower bound of coverage:

CCOLEP (7) 7COLEP ey
* Theorem 2,3 / (Theorem 3)
Main Model & #(%) with bound Reasoning 7 COLEP () with bound Certified Prediction set (eq. (8))
Knowlense T @A) Component [ [LI 0L )] DR )] — Cra (@)

1 \ _/ (1 — a) Coverage Guarantee

Test sample % — h
1% —x|l, <€ Translate [#(%), ()] to [ [ COLEP ()], U[#COLEP (%)]] (Theorem 2)

(Theorem 1)




Certification of the reasoning component

Theorem 1 (Bounds for Conditional Class Probabilities 7$°*F (x) within the Reasoning Component)

Given any input x and perturbation bound 6, we let [z; (z), %, (z)] be bounds for the estimated

conditional class and concept probabilities by all models with jy € [N, + L] (for example, achieved
via randomized smoothing). Let V; be the set of index of conditional variables in the PC except for

j € [N.| and V; be that of consequence variables. Then the bound for COLEP-corrected estimate of
the conditional class probability #5°*** is given by:

#j=0 Jvevy JvEVI

(1 —7;(z)) X exp { > T(#5, (), 5,) + 3 T, (2), uav)} F(p)
U[ACOLEP( )] = {

~”

(6)

! Hy = VeV ivevy

+1
3 (x) 3 exp { 22T (#gy (), i) + ZT(K(w),ujv)} F(p)

log(ab+(1—a)(1—b)). We similarly give the lower bound LL[#7°***| in Appendix E.1.

Remarks. Thm. 1 establishes a certification connection from the learning component to the reasoning
component. In other words, we show that learning component bounds |7, 77| can be directly plugged

where T'(a,b) =

Standard Prediction set (eq. (5))  -ower bound of coverage:

(COLEP (f) -_— 7 COLEP ey
into a closed-form formula to obtain reasoning component bounds [L[# COLEP] , U[5ORE7]). /"‘a (Theorem 3)
Main Model & #(%) with bound Reasonin 7 COLEP (%) with bound Certified Prediction set (eq. (8))
Knowolleflge —  E®E®)] Componeﬁt — [L[#COLEP(5)], U[ACOLEP (%)]] — CCOVEPs (1
models )

1 N A |

Test sample ¥

(1 — a) Coverage Guarantee

I —x|l, <€ Translate [# (%), #(%)] to [L[#COLEP ()], U[#COLEP (%)]] (Theorem 2)

(Theorem 1)
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Certifiably robust conformal prediciton

Theorem 2 (Certifiably Robust Conformal Prediction of COLEP). Consider a new test sample X, 1
drawn from Pxy. For any bounded perturbation |¢||2 < d in the input space and the adversarial

sample X1 := Xni1 + ¢ we have the following guaranteed marginal coverage:
P[Yn41 € éﬁ?iEP‘s (Xn+1)] > 1 -« (7
if we construct the certified prediction set of COLEP where

CC’OLEP5( n+1) — {J c [NC] . SﬁC"OLEP(Xn+1, 1) S Ql_a({sﬁ_@m% (Xi)]I[YiZj])}iEIml)} (8)
J g

and S_corses (-, ) is a function of worst-case non-conformity score considering perturbation radius 6:
i

Us[ACOLEP(X )]+U(1—U [ACOLEP(XZ)]), Y/, 7é]

1 — Ls[a57 (X)) + ulls[7;77(X3)],  Yi=

with Us[# 57 (z)] = max,,<s 757 (x + 1) and Ls[#5°" (z)] = miny,,<s 7575 (x + n).

s couses (X, Iy, =4)) = { 9)

Remarks. Thm. 2 shows that the coverage guarantee of COLEP in the adversary setting is still valid
if we construct the prediction set by considering the worst-case perturbation as in eq. (8). That is,
the prediction set of COLEP in eq. (8) covers the ground truth of an adversarial sample with nominal

Standard Prediction set (eq. (5)) Lower bound of coverage:

level 1 — . To achieve that, we use a worst-case non-conformity score as in eq. (9) during calibration CCOLEP (3 TCOLEPcer
to counter the influence of adversarial sample during inference. The bound of output probability in (Theorem 3)
eq. (9) can be computed by Thm. 1 to achieve end-to-end robustness certification of COLEP. /
Main Model & #(%) with bound Reasoning #COLEP (%) with bound Certified Prediction set (eq. (8))
Knowolleldge —_ R, 6] Component — [L[#COLEP (%)], U[#COLEP (%)]] — COLEPS )
moaeils

Test sample ¥

1 N A 1

(1 — a) Coverage Guarantee

I —xl, <€ Translate [#(%), ()] to [L[#COLEP ()], U[RCOLEP (%)]] (Theorledrrn 2

(Theorem 1)



Worst-case coverage of COLEP

Theorem 3 (Certified (Worst-Case) Coverage of COLEP). Consider the new sample X1 drawn
from Pxy and adversarial sample X, 11 := Xn+1 + € with any perturbation ||e||2 < é in the input
space. We have: A

P P[Ypy1 € Cg?iEP(Xn+1)] > 7 COLEPeer . gﬁ\rfl] {TCOLEPcer}, (10)

COLEPer

where the certified (worst-case) coverage of the j-th class label T is formulated as:

7‘3~COLEP“"’ = max {7' : QT({Sﬁ-C.OLEPS (Xi’H[Yi=j])}i€Ical) — Ql_a({sﬁgowp (Xi’ H[Yi:j])}iELal)} - ab
J

Remarks. Recall that thm. 2 constructs a certified prediction set as eq. (8) considering the worst-case
perturbation and proves that the prediction set has 1 — « coverage guarantees. In contrast, thm. 3
provides a lower bound to the coverage of COLEP (T]COLEPC‘“) with the standard prediction set as

eq. (5) in the adversary setting. In addition to the certified coverage, we consider finite calibration set

size and certified coverage with finite sample errors in Appendix F. Standard Prediction set (eq. (5)) _ Lower bound of coverage:
CCOLEP(x) T cer
/ (Theorem 3)
Main Model & #(%) with bound Reasoning #ACOLEP (%) with bound Certified Prediction set (eq. (8))
— ~CO ~ Aco ~ COLEP
Knn?:)vollgige I [Z(X), ()] Component | [L[ACCHEF @], Ut (o) — @

T ¥ / (1 — a) Coverage Guarantee

Test sample ¥ TH 5
1% — x|, < e Translate [#(%), #(®)] to [L[7COLEP (%)], U[#COLEP (%)]] (Theorem 2)

(Theorem 1) 15




How does the reasoning component benefit
in COLEP?

CSOLEP (%) has better coverage than C,, 4 (%)

/ (Theorem 4) \

Standard Prediction set (eq. (5)) Standard Prediction set (eq. (5)) Lower bo‘éggEOPf coverage:
~ _ CCOLEP(J?) ’ T cer
Crya (%) e (Theorem 3)
A COLEP (%) has better accuracy than 7 (%)
/ (TheoremN
Main Model & #(%) with bound Reasonin 7 COLEP (%) with bound Certified Prediction set (eq. (8))
Knowledge — — &), @] Componeﬁt — [L[#COLEP ()], U[#COLEP ()] —> COLEPS( %)

models

I \ / (1 — a) Coverage Guarantee

Test sample ¥ T )
1% — x|, < € Translate [72(%), ()] to [L[#COLEP ()], U[#COLEP (%)]] (Theorem 2)

(Theorem 1)
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COLEP achieves higher marginal coverage
than a standard conformal model

Theorem 4 (Comparison of Marginal Coverage of COLEP and Main Model). Consider the adversary
setting that the calibration set I., consists of np, samples drawn from the benign distribution Dy,
while the new sample (X +1, Yn+1) is drawn np, times from the adversarial distribution D,. Assume
that A(7;,D,) < 0.5 < A(#j,Ds) for j € [N.|, where A(7;,D) is the expectation of prediction
accuracy of w; on D. Then we have: _ A _

P[Yn+1 € Croa” (Xn+1)] > P[Ynt1 € Cnya(Xnt1)], w.p.

1— _rél[zjlvx]{exp {—2np, (0.5 — A(#;, Da))2e§,1,pa }np,exp{— 2np, ((A(#;, Ds) — 0.5)2 pjcej,c’Db)z}}
J c
ce{0,1}
where pjo = Pp, [}y +;)| and pj1 = Pp, [Ijy=;] are class probabilities on benign distribution. e

Remarks. Thm. 4 shows that COLEP can achieve better marginal coverage than a single model with a
high probability exponentially approaching 1. The probability increases in particular with a higher
quality of models represented by €; 1,p,, €;,c,p,, A(7;, Dp). It also increases with lower A(#;, D, ),
indicating COLEP improves marginal coverage more likely in a stronger adversary setting.
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COLEP achieves higher prediction accuracy

than a single standard ML model

Theorem 5 (Comparison of Prediction Accuracy of COLEP and Main Model). Suppose that we
evaluate the expected prediction accuracy of #;°***(-) and #;(-) on n samples drawn from D,, and
denote the prediction accuracy as A(#;°"*(-), Dm) and A(#;(-), Dm). Then we have:

ARV (), Dm) > A(#5(-),Dm), wp.1— Y pp Y  Pp[Y =jlexp{—2n(ejcp)’}. (18)

De{Das,Dp} c€{0,1}

Remarks. Thm. 5 shows that COLEP achieves better prediction accuracy than the main model with a
high probability exponentially approaching 1. The probability increases with a high utility of models
and knowledge rules (i.e., a large €;.,p). In Appendix H, we further show that COLEP achieves
higher prediction accuracy with more useful knowledge rules.

18
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* Covera ge IS broken with CP attack (6 = 0.25) on GTSRB, CIFAR-10, and AwA?2. The nominal coverage level (green line) is 0.9.

e COLEP achieves better tradeoff between coverage and efficiency than RSCP

[1] Gendler, Asaf, Tsui-Wei Weng, Luca Daniel, and Yaniv Romano. "Adversarially robust conformal prediction." In International Conference on Learning Representations. 2021. 19



Conclusion

A certifiably robust conformal prediction framework via knowledge-
enabled logical reasoning: COLEP

* Derive the conformal guarantee with COLEP

* Prove that with the reasoning component, COLEP achieves better
coverage/prediction accuracy than a single standard ML model

* Empirically show the validity and effectiveness of COLEP on GTSRB,
CIFAR-10, and AwA?2



