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We introduce Uni-RLHF, a comprehensive system implementation tailored for RLHF. It aims to 

provide a complete workflow from real human feedback. Uni-RLHF contains:

• A universal multi-feedback annotation platform  → 32 tasks

• Large-scale crowdsourced feedback datasets → 15 million annotation

• Modular offline RLHF baseline implementations → 3 RM structure

• The interface supports Offline and Online Mode, and can be extended to access new 

environments through simple interface extensions

• The Query Sampler determines sampling strategies and what data needs to be labelled

• The User Interface allows crowdsourcing to view available track clips and provide feedback 

responses, offering a range of video clip and image annotation methods

• Feedback Translator convert different feedback labels into a standard format

①Multi-feedback Annotation Platform

② Standardized Feedback Encoding Format

• Comparative Feedback: Gives relative binary feedback comparison between two 

trajectories

• Attribute Feedback: Gives a relative feedback comparison between two trajectories 

based on multiple attributes

• Evaluative Feedback: Gives multiple levels of evaluation options for a trajectory

• Visual Feedback: Selects and labels the visual highlights of a track

• Keypoint Feedback: Capture and mark keyframes in a trajectory

③ Large-scale Annotation Pipeline

• Naïve: only the task description 

• Example: five annotated samples and 

detailed analyses 

• Filter: added filters

👉: https://uni-rlhf.github.io/

④ Evaluating Offline RL With Comparative Feedback ⑤ SMARTS Experiments

⑥ Attribute Feedback

Oracle: Ground Truth ST: Scripted Teacher CS: Crowd Sourced 

• The IQL-based baseline is the most stable, and IQL-CS‘s perform as well as IQL-Oracle

• The TFM structure outperforms the MLP structure, especially in the environment of sparse reward

• Compared to Scripted Teacher (ST), Crowd Sourced (CS) can achieve comparable or even 

superior results in most environments

• Multi-Metric Evaluation for SMARTS

Can the RLHF method successfully replace hand-

designed reward functions on real complex tasks?

Walker is able to follow the user's preference for speed and height

Experts first annotate 300 

segments as Oracle.

Next, the researchers 

asked 5 crowdsource to 

annotate 100 trajectories 

in 3 settings.

Each component significantly improves the 

reliability of the annotation, ultimately 

achieving a 98% agreement rate with 

expert annotations.


