

Uni-RLHF: Universal Platform and Benchmark Suite for Reinforcement Learning with Diverse Human Feedback

③: https://uni-rlhf.github.io/

Tianjin University

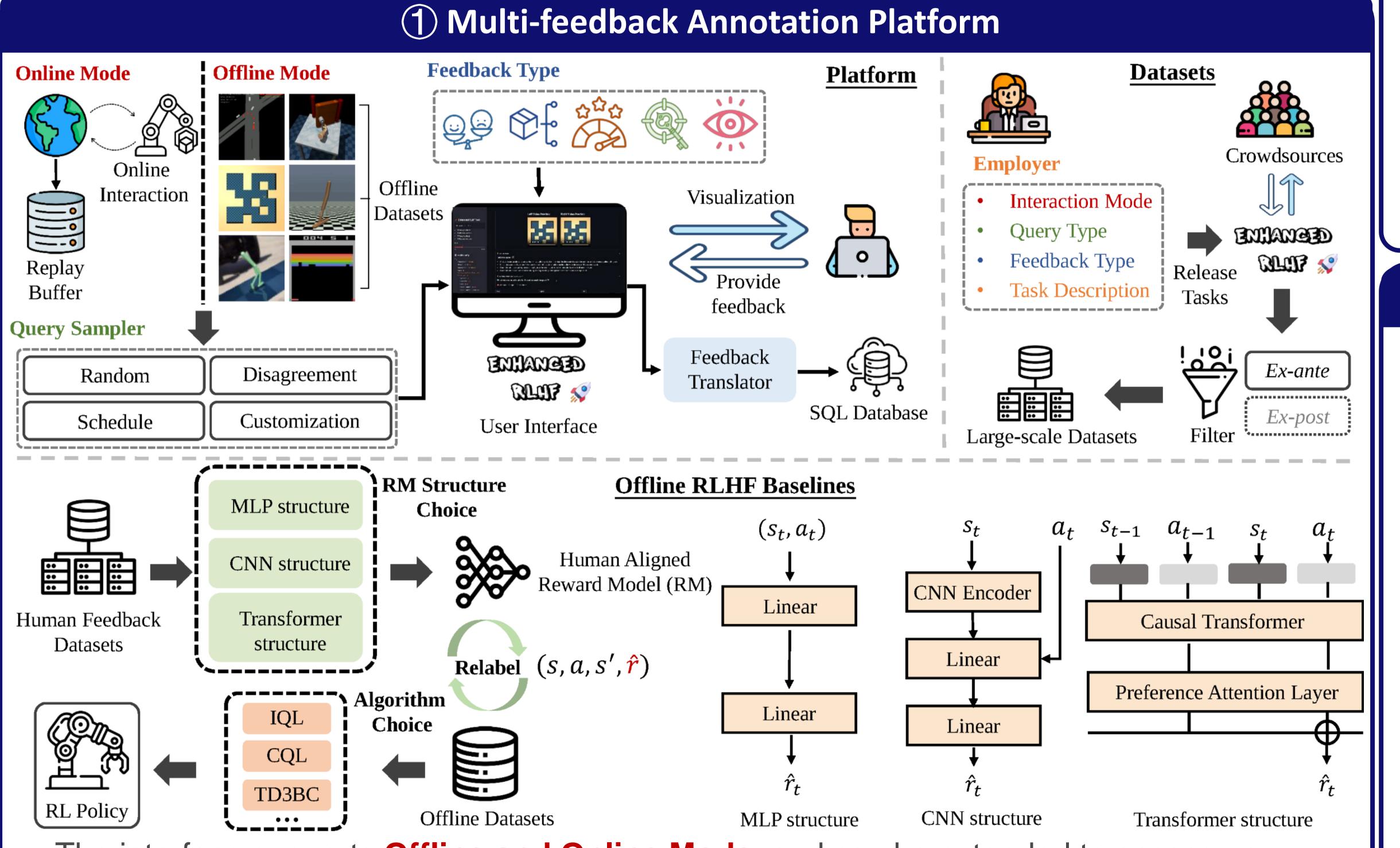
Yifu Yuan, Jianye Hao, Yi Ma, Zibin Dong, Hebin Liang, Jinyi Liu, Zhixin Feng, Kai Zhao, Yan Zheng

Ma: yuanyf@tju·edu·cn

Overview

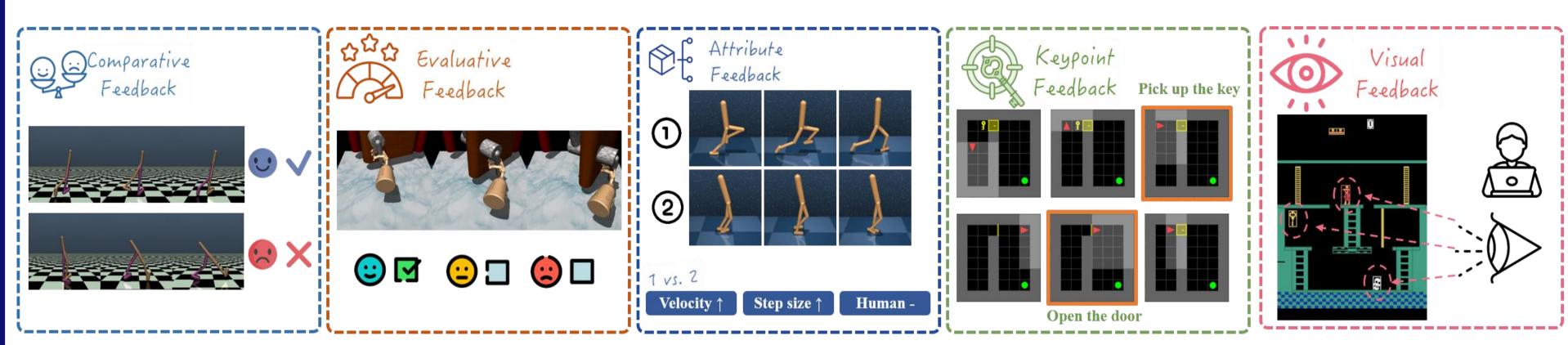
We introduce **Uni-RLHF**, a comprehensive system implementation tailored for RLHF. It aims to provide a complete workflow from *real human feedback*. Uni-RLHF contains:

- A universal multi-feedback annotation platform \rightarrow 32 tasks
- Large-scale crowdsourced feedback datasets → 15 million annotation
- Modular offline RLHF baseline implementations → 3 RM structure



- The interface supports Offline and Online Mode, and can be extended to access new environments through simple interface extensions
- The Query Sampler determines sampling strategies and what data needs to be labelled
- The User Interface allows crowdsourcing to view available track clips and provide feedback responses, offering a range of video clip and image annotation methods
- Feedback Translator convert different feedback labels into a standard format

(2) Standardized Feedback Encoding Format



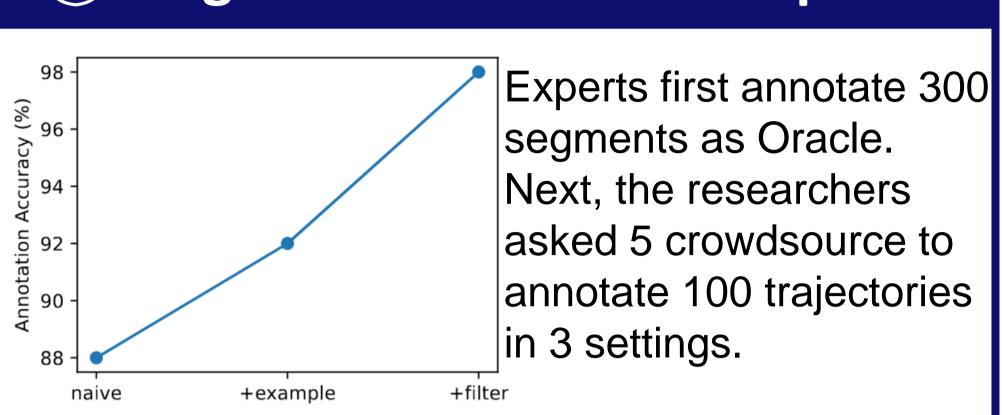
- Comparative Feedback: Gives relative binary feedback comparison between two trajectories
- Attribute Feedback: Gives a relative feedback comparison between two trajectories based on multiple attributes
- Evaluative Feedback: Gives multiple levels of evaluation options for a trajectory
- Visual Feedback: Selects and labels the visual highlights of a track
- Keypoint Feedback: Capture and mark keyframes in a trajectory

(4) Evaluating Offline RL With Comparative Feedback

Oracle: Ground Truth ST: Scripted Teacher CS: Crowd Sourced

- The IQL-based baseline is the most stable, and IQL-CS's perform as well as IQL-Oracle
- The TFM structure outperforms the MLP structure, especially in the environment of sparse reward
- Compared to Scripted Teacher (ST), Crowd Sourced (CS) can achieve comparable or even superior results in most environments

(3) Large-scale Annotation Pipeline



- Naïve: only the task description
- Example: five annotated samples and detailed analyses
- Filter: added filters

Each component significantly improves the reliability of the annotation, ultimately achieving a 98% agreement rate with expert annotations.

(5) SMARTS Experiments

Can the RLHF method successfully replace handdesigned reward functions on real complex tasks?

Distance-Traveled Reward Single-step travelling distant		e Encouraging vehicles to travel towards the goal		
Reach Goal Reward +20		If ego vehicle reach the goal		
Near Goal Reward	$min(dis_to_goal/5,10)$	If ego vehicle close the goal		
Collision Penalty	-40	Collision		
Mistake Penalty	-6	Ego vehicle triggers off road, off lane or wrong way		
Lane Selection Reward +0.3		The ego vehicle is in the right lane		
Lane Change Penalty -1		The ego vehicle changes lane		
Time Penalty	-0.3	Each time step gives a fixed penalty term		

IQL-Oracle

	success rate↑	speed↑	comfort↓	success rate↑	speed↑	comfort↓
left-c cruise cutin	0.53 ± 0.03 0.71 ± 0.03 0.85 ± 0.04	9.75 ± 0.32 13.65 ± 0.03 13.84 ± 0.05	7.10 ± 0.06 1.85 ± 0.08 0.95 ± 0.23	0.70 ± 0.03 0.62 ± 0.03 0.80 ± 0.03	10.04 ± 0.16 12.61 ± 0.44 13.90 ± 0.01	6.98 ± 0.26 1.84 ± 0.49 0.86 ± 0.05
avg	0.70	12.42	3.30	0.71	12.19	3.23

6 Attribute Feedback

IQL-CrowdSource

