Yeongyeon Na^{*} · Minje Park^{*} · Yunwon Tae^{*} · Sunghoon Joo[†] Equal contribution. [†] Corresponding author.

We propose the simple but effective ECG-specific generative self-supervised learning framework, named ST-MEM (Spatio-Temporal Masked Electrocardiogram Modeling).

ST-MEM includes lead indicators (lead-wise shared decoder, learnable lead embeddings, and separation embedding).

spatio-temporal patchifying.

Introduction

VUNO

What is ECGs? The ECG is a non-invasive heart measurement to observe the electrical signals over time and diagnose diseases. A standard 12-lead ECG is the most common measurement setting that provides spatial and temporal information regarding the heart.

Why do we need representation learning in ECGs?

- High cost of labeling ECGs (hiring cardiologists \rightarrow \$\$\$) ٠
- Diverse heart diseases \rightarrow Diverse downstream tasks
- Small number of input features from mobile ECG devices such as smartwatches

Experiments

classification tasks. The experiment is conducted based on 12-lead

Methods		PTB-XL			CPSC2018			
	1%	5%	100%	1%	5%	100%		
Supervised	0.676 ± 0.011	0.736 ± 0.020	0.905 ± 0.004	0.600 ± 0.095	0.609 ± 0.111	0.958 ± 0.002		
MoCo v3	0.797 ± 0.006	0.826 ± 0.015	0.913 ± 0.002	0.791 ± 0.045	0.903 ± 0.019	0.967 ± 0.003		
CMSC	0.648 ± 0.064	0.773 ± 0.023	0.877 ± 0.003	0.625 ± 0.013	0.732 ± 0.038	0.938 ± 0.006		
MTAE	0.707 ± 0.024	0.713 ± 0.001	0.910 ± 0.001	0.670 ± 0.032	0.756 ± 0.013	0.961 ± 0.001		
MTAE+RLM	0.730 ± 0.030	0.730 ± 0.003	0.911 ± 0.004	0.708 ± 0.020	0.726 ± 0.011	0.960 ± 0.002		
MLAE	0.793 ± 0.007	0.838 ± 0.018	0.915 ± 0.001	0.860 ± 0.013	0.922 ± 0.007	0.973 ± 0.002		
(250 Hz) CPC [†]	0.740 ± 0.057	0.838 ± 0.024	0.933 ± 0.001	0.754 ± 0.015	0.898 ± 0.026	0.974 ± 0.002		
$(100 \text{ Hz}) \text{ CPC}^{\dagger}$	0.773 ± 0.014	0.842 ± 0.043	$\textbf{0.934} \pm \textbf{0.002}$	0.762 ± 0.058	0.917 ± 0.016	0.973 ± 0.003		
ST-MEM (Ours)	$\textbf{0.815} \pm \textbf{0.012}$	$\textbf{0.878} \pm \textbf{0.011}$	0.933 ± 0.003	$\textbf{0.897} \pm \textbf{0.025}$	$\textbf{0.952} \pm \textbf{0.004}$	$\textbf{0.980} \pm \textbf{0.001}$		

Robustness of any lead combinations.

Methods	PTB-XL				CPSC2018		
	12-lead	6-lead	1-lead	12-lead	6-lead	1-lead	1-lead
MTAE+RLM	0.911 ± 0.004	0.888 ± 0.002	0.795 ± 0.003	0.960 ± 0.002	0.931 ± 0.017	0.909 ± 0.006	0.857 ± 0.005
MLAE	0.915 ± 0.001	0.890 ± 0.001	0.797 ± 0.001	0.973 ± 0.002	0.959 ± 0.002	0.925 ± 0.001	0.861 ± 0.003
ST-MEM (Ours)	0.933 ± 0.003	$\textbf{0.903} \pm \textbf{0.007}$	0.804 ± 0.005	0.980 ± 0.001	$\textbf{0.973} \pm \textbf{0.002}$	0.937 ± 0.006	$\textbf{0.866} \pm \textbf{0.003}$

ST-MEM can learn general representation by capturing spatio-temporal relationship of ECGs through

Fine-tuning results of arrhythmia and myocardial infarction (MI) ECG data on unseen data (i.e., not used during the pre-training stage).

w/ lead indicators (proposed)

w/o lead indicators (ablation)

