

Mind Your Augmentation: The Key to Decoupling Dense Self-supervised Learning

Congpei Qiu^{1*}, Tong Zhang^{2*}, Yanhao Wu¹, Wei Ke^{1‡}, Mathieu Salzmann², Sabine Süsstrunk²

¹School of Software Engineering, Xi'an Jiaotong University, China ²School of Computer and Communication Sciences, EPFL, Switzerland

Background

- Self-supervised Learning based on Masked Image Modelling progresses significantly in processing dense-level vision information
 - → DINO v2 [2] applies the MIM objective of IBOT as dense-level supervision

Background

iBOT [1]

- Self-supervised Learning based on Masked Image Modelling progresses significantly in processing dense-level vision information
 - → DINO v2 [2] applies the MIM objective of IBOT as dense-level supervision

Blockwise Mask

- □ High mask ratio leads to the loss of key semantics in multi-object images
 - → Limited learning efficiency for accessing dense-level patterns

Zhou, Jinghao, et al. "ibot: Image bert pre-training with online tokenizer." arXiv preprint arXiv:2111.07832 (2021).
Oquab, Maxime, et al. "Dinov2: Learning robust visual features without supervision." arXiv preprint arXiv:2304.07193 (2023).

Background

iBOT [1]

- Self-supervised Learning based on Masked Image Modelling progresses significantly in processing dense-level vision information
 - → DINO v2 [2] applies the MIM objective of IBOT as dense-level supervision

Blockwise Mask

Strong augmentations lead to coupling shortcut in Dense SSL

Zhou, Jinghao, et al. "ibot: Image bert pre-training with online tokenizer." arXiv preprint arXiv:2111.07832 (2021).
Oquab, Maxime, et al. "Dinov2: Learning robust visual features without supervision." arXiv preprint arXiv:2304.07193 (2023).

Visualization examples of pre-trained models taking coupling shortcut :

* We show the visualization examples following [2], the query point-level feature is marked by the red dot

Visualization examples of pre-trained models taking coupling shortcut :

* We show the visualization examples following [2], the query point-level feature is marked by the red dot

 Dense-level representations are heavily entangled with their surroundings

(c) Shared information leaked from the context becomes shortcut for alignment

(c) Shared information leaked from the context becomes shortcut for alignment

Coupling Rate (CR) =
$$\frac{\max\left(\frac{\pi}{2} - \theta(\mathbf{z}_{A_2}, \mathbf{z}_B), \epsilon\right)}{\max\left(\frac{\pi}{2} - \theta(\mathbf{z}_{A_1}, \mathbf{z}_B), \epsilon\right)}$$

$$Coupling Rate (CR) = \frac{\max\left(\frac{\pi}{2} - \theta(z_{A_2}, z_B), \epsilon\right)}{\max\left(\frac{\pi}{2} - \theta(z_{A_1}, z_B), \epsilon\right)} \longrightarrow Biased similarity when information leaks from B$$

 $Coupling Rate (CR) = \frac{\max\left(\frac{\pi}{2} - \theta(z_{A_2}, z_B), \epsilon\right)}{\max\left(\frac{\pi}{2} - \theta(z_{A_1}, z_B), \epsilon\right)} \longrightarrow Biased similarity when information leaks from B max \left(\frac{\pi}{2} - \theta(z_{A_1}, z_B), \epsilon\right) \longrightarrow The true correlation between two objects$

* '-D' denotes models pre-trained with the de-coupling branch

 $Coupling Rate (CR) = \frac{\max(\frac{\pi}{2} - \theta(z_{A_2}, z_B), \epsilon)}{\max(\frac{\pi}{2} - \theta(z_{A_1}, z_B), \epsilon)} \longrightarrow Biased similarity when information leaks from B max(\frac{\pi}{2} - \theta(z_{A_1}, z_B), \epsilon) \longrightarrow The true correlation between two objects$

□ A generalizable de-coupling strategy for dense-level SSL

A. RCC-based Augmentation Pipeline

B. De-coupling Branch

□ A generalizable de-coupling strategy for dense-level SSL

□ A generalizable de-coupling strategy for dense-level SSL

Experiments

(a) CNN-based models (ResNet50)

Method	6	VOC De	et.	C	COCO D	et.	COCO ISeg.		
	AP	AP_{50}	AP ₇₅	AP	AP_{50}	AP ₇₅	AP	AP_{50}	AP ₇₅
MoCo [†] v2	54.6	81.0	60.4	37.8	57.4	41.0	32.9	54.1	35.2
ReSim[†]	56.6	81.7	63.5	38.3	57.8	41.4	33.5	54.4	35.6
DenseCL	56.7	81.7	63.0	38.5	58.1	41.5	33.6	54.8	35.7
DenseCL-D	57.2	82.2	63.7	39.3	58.7	42.6	34.2	55.7	36.5
PLRC	57.1	82.1	63.8	39.8	59.6	43.7	35.9	56.9	38.6
SoCo [†]	56.8	81.7	63.5	38.5	57.9	41.5	33.4	54.6	35.4
SoCo-D	57.8	82.5	64.4	40.3	60.1	44.0	35.1	56.9	37.6

(b) ViT-based models (ViT-S)

Method	C	COCO D	et.	C	OCO IS	ADE Seg.	
method	AP	AP ₅₀	AP ₇₅	AP	AP ₅₀	AP ₇₅	mIoU
iBOT	42.3	61.2	45.6	37.0	58.3	39.4	39.9
iBOT-D	45.1	64.3	48.7	39.1	61.2	41.7	41.6
MaskAlign	45.6	65.2	49.7	39.6	62.0	42.4	43.7
MaskAlign-D	46.7	66.4	50.5	40.5	63.2	43.5	44.3

iBOT iBOT-D MaskAlign MaskAlign-D

(c) Affinity visualization

Experiments

(a) CNN-based models (ResNet50)

Method	VOC Det.			COCO Det.			COCO ISeg.		
	AP	AP_{50}	AP ₇₅	AP	AP_{50}	AP ₇₅	AP	AP_{50}	AP ₇₅
MoCo [†] v2	54.6	81.0	60.4	37.8	57.4	41.0	32.9	54.1	35.2
ReSim[†]	56.6	81.7	63.5	38.3	57.8	41.4	33.5	54.4	35.6
DenseCL	56.7	81.7	63.0	38.5	58.1	41.5	33.6	54.8	35.7
DenseCL-D	57.2	82.2	63.7	39.3	58.7	42.6	34.2	55.7	36.5
PLRC	57.1	82.1	63.8	39.8	59.6	43.7	35.9	56.9	38.6
SoCo [†]	56.8	81.7	63.5	38.5	57.9	41.5	33.4	54.6	35.4
SoCo-D	57.8	82.5	64.4	40.3	60.1	44.0	35.1	56.9	37.6

(b) ViT-based models (ViT-S)

Method	C	COCO D	et.	C	OCO IS	ADE Seg.	
	AP	AP ₅₀	AP ₇₅	AP	AP ₅₀	AP ₇₅	mIoU
iBOT	42.3	61.2	45.6	37.0	58.3	39.4	39.9
iBOT-D	45.1	64.3	48.7	39.1	61.2	41.7	41.6
MaskAlign	45.6	65.2	49.7	39.6	62.0	42.4	43.7
MaskAlign-D	46.7	66.4	50.5	40.5	63.2	43.5	44.3

Models with the de-coupling strategy

• learns dense semantics more efficiently and achieves better dense prediction performance

(c) Affinity visualization

	iBOT	iBOT-D	MaskAlign	MaskAlign-D
E	dis .	à.		
Star -		-	-	
	-	-		
			Les Cha	-
	-90	-		
	in.	Ser.	E.	No.

Experiments

(a) CNN-based models (ResNet50)

Method	VOC Det.			COCO Det.			COCO ISeg.		
	AP	AP_{50}	AP ₇₅	AP	AP_{50}	AP ₇₅	AP	AP_{50}	AP ₇₅
MoCo [†] v2	54.6	81.0	60.4	37.8	57.4	41.0	32.9	54.1	35.2
ReSim[†]	56.6	81.7	63.5	38.3	57.8	41.4	33.5	54.4	35.6
DenseCL	56.7	81.7	63.0	38.5	58.1	41.5	33.6	54.8	35.7
DenseCL-D	57.2	82.2	63.7	39.3	58.7	42.6	34.2	55.7	36.5
PLRC	57.1	82.1	63.8	39.8	59.6	43.7	35.9	56.9	38.6
SoCo [†]	56.8	81.7	63.5	38.5	57.9	41.5	33.4	54.6	35.4
SoCo-D	57.8	82.5	64.4	40.3	60.1	44.0	35.1	56.9	37.6

(b) ViT-based models (ViT-S)

Method	C	COCO D	et.	C	OCO IS	ADE Seg.	
	AP	AP ₅₀	AP ₇₅	AP	AP ₅₀	AP ₇₅	mIoU
iBOT	42.3	61.2	45.6	37.0	58.3	39.4	39.9
iBOT-D	45.1	64.3	48.7	39.1	61.2	41.7	41.6
MaskAlign	45.6	65.2	49.7	39.6	62.0	42.4	43.7
MaskAlign-D	46.7	66.4	50.5	40.5	63.2	43.5	44.3

Models with the de-coupling strategy

- learns dense semantics more efficiently and achieves better dense prediction performance
- acquires dense-level representations with higher consistency with the object regions

(c) Affinity visualization

Thank You !

Q&A: qiucongpei@gmail.com

https://openreview.net/forum?id=WQYHbr36Fo