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Background

• Self-supervised Learning based on Masked Image Modelling progresses 
significantly in processing dense-level vision information 

DINO v2 [2] applies the MIM objective of IBOT as dense-level supervision

iBOT [1]

[1] Zhou, Jinghao, et al. "ibot: Image bert pre-training with online tokenizer." arXiv preprint arXiv:2111.07832 (2021).
[2] Oquab, Maxime, et al. "Dinov2: Learning robust visual features without supervision." arXiv preprint arXiv:2304.07193 (2023).
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 High mask ratio leads to the loss of key semantics in multi-object images

Blockwise Mask

Limited learning efficiency for accessing dense-level patterns

[1] Zhou, Jinghao, et al. "ibot: Image bert pre-training with online tokenizer." arXiv preprint arXiv:2111.07832 (2021).
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Blockwise Mask

➢ Strong augmentations lead to coupling shortcut in Dense SSL

[1] Zhou, Jinghao, et al. "ibot: Image bert pre-training with online tokenizer." arXiv preprint arXiv:2111.07832 (2021).
[2] Oquab, Maxime, et al. "Dinov2: Learning robust visual features without supervision." arXiv preprint arXiv:2304.07193 (2023).



Coupling Issue in Dense SSL

Visualization examples of pre-trained models taking coupling shortcut :

PLRC [3] iBOT [1]

* We show the visualization examples following [2], the query point-level feature is 
marked by the red dot 

[3]  Bai, Yutong, et al. "Point-level region contrast for object detection pre-training." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.



PLRC [3] iBOT [1] 

* We show the visualization examples following [2], the query point-level feature is 
marked by the red dot 

Coupling Issue in Dense SSL

⚫ Dense-level representations are heavily entangled
with their surroundings

Visualization examples of pre-trained models taking coupling shortcut :

[3]  Bai, Yutong, et al. "Point-level region contrast for object detection pre-training." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
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(a) Insufficient semantics for alignment 



S

T `

Feature Extraction

channel

channel

Dense-level
Contrast

Latent Space
View #1

View #2

mask

Coupling Issue in Dense SSL

(a) Insufficient semantics for alignment 

(b) Query and key shares the same context
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Object Coupling

(c) Shared information leaked from the context becomes shortcut for alignment

(a) Insufficient semantics for alignment 

(b) Query and key shares the same context
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(c) Shared information leaked from the context becomes shortcut for alignment

Coupling

(a) Insufficient semantics for alignment 

(b) Query and key shares the same context



 A pipeline for quantitatively measuring coupling in pre-trained models

Empirical Study of Coupling
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Biased similarity when information leaks from 𝐵
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* ‘-D’ denotes models pre-trained with the de-coupling branch

(a) 𝑪𝑹 value on CNNs (b) 𝑪𝑹 value on ViTs

Biased similarity when information leaks from 𝐵
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 A generalizable de-coupling strategy for dense-level SSL
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Experiments

(a) CNN-based models (ResNet50)

(b) ViT-based models (ViT-S)

(c) Affinity visualization
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⚫ learns dense semantics more efficiently and achieves better dense prediction performance
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Experiments

(a) CNN-based models (ResNet50)

(b) ViT-based models (ViT-S)

⚫ acquires dense-level representations with higher consistency with the object regions

(c) Affinity visualization

⚫ learns dense semantics more efficiently and achieves better dense prediction performance

Models with the de-coupling strategy 
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https://openreview.net/forum?id=WQYHbr36Fo
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