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(Visual) Sim2Real Transter
Goal: Sim2Real Adaptation
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(Visual) Sim2Real Transter
Goal: Sim2Real Adaptation
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(Visual) Sim2Real Transter
Goal: Sim2Real Adaptation
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(Visual) Sim2Real Transter
Goal: (Reliable) Sim2Real Adaptation
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Reliability: Calibrated Sim2Real Predictions
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(Visual) Sim2Real Transter
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(Visual) Sim2Real Transter
Reliability: Calibrated Predictions
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(Visual) Sim2Real Transter
Goal: (Reliable) Sim2Real Adaptation
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Reliability: Calibrated Sim2Real Predictions
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Reliability: Calibrated Sim2Real Predictions
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g@ Measuring Robustness

(Visual) Sim2Real Transter
Reliability: Calibrated Sim2Real Predictions
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Predictions
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(Visual) Sim2Real Transter

Reliability: Why do we need interventions to fix this?

Unlabeled “Real” Data

Labeled “Synthetic” Data
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(Visual) Sim2Real Transter

Reliability: Why do we need interventions to fix this?
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(Visual) Sim2Real Transter

Reliability: Why do we need interventions to fix this?

Calibrating on labeled
‘synthetic” data Is easy
because you have labels!

Unlabeled “Real” Data

Labeled “Synthetic” Data

emp. Scaling Cal. Losses

15



X ) Improving Generalization @Improving Reliability: Sim2Real m Measuring Robustness

(Visual) Sim2Real Transter

Reliability: Why do we need interventions to fix this?

Data you care about (1) has no
labels and (2) is dissimilar!

Unlabeled “Real” Data

Labeled “Synthetic” Data
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Labeled “Synthetic” Data

@Improving Reliability: Sim2Real
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(Visual) Sim2Real Transter
AUGCAL: “Proactive” Sim2Real Calibration
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Can we move Sim to be
“slightly” closer to Real??

Labeled “Synthetic” Data

Unlabeled “Real” Data
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(Visual) Sim2Real Transter
AUGCAL: “Proactive” Sim2Real Calibration

AUG helps you
make the hop
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CAL Unlabeled “Real” Data

CAL helps you be
more calibrated

Labeled “Synthetic” Data

19



X ) Improving Generalization @Improving Reliability: Sim2Real m Measuring Robustness

(Visual) Sim2Real Transter
AUGCAL: “Proactive” Sim2Real Calibration
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(Visual) Sim2Real Transter
AUGCAL: “Proactive” Sim2Real Calibration
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(Visual) Sim2Real Transter
AUGCAL: “Proactive” Sim2Real Calibrated Adaptation
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(Visual) Sim2Real Transter
AUGCAL: “Proactive” Sim2Real Calibrated Adaptation
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(Visual) Sim2Real Transter
AUGCAL: “Proactive” Sim2Real Calibrated Adaptation
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(Visual) Sim2Real Transter
AUGCAL: “Proactive” Sim2Real Calibrated Adaptation
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(Visual) Sim2Real Transter
AUGCAL: “Proactive” Sim2Real Calibrated Adaptation

w/0 AUGCAL w AUGCAL

Accurate and Certain
Predictions

Vu et al., CVPR 2019 Hoyer et al., ECCV 2022 Hoyer et al., CVPR 2021



<

Improving Generalization @Improving Reliability: Sim2Real m Measuring Robustness

(Visual) Sim2Real Transter
AUGCAL: “Proactive” Sim2Real Calibrated Adaptation

Object Recognition Semantic Segmentation

® Retained or Improved (~5 mloU for SemSeqg) performance for adaptation methods!
® Reduced Expected Calibration Error (ECE) — more calibrated predictions!

® Reduced overconfidence in mispredictions!
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(Visual) Sim2Real Transter
AUGCAL: “Proactive” Sim2Real Calibrated Adaptation
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Object Recognition Semantic Segmentation

® Retained or Improved (~5 mloU for SemSeqg) performance for adaptation methods!
® Reduced Expected Calibration Error (ECE) — more calibrated predictions!

® Reduced overconfidence in mispredictions!

® BONUS: Better mis-classification detection with AUGCAL!
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(Visual) Sim2Real Transter
AUGCAL: “Proactive” Sim2Real Calibrated Adaptation

AUGCAL a trammg hme patch to |m|orove S|m2 %ea\ adaptahon

Object Recognition Semantic Segmentation

‘/Derformance

‘/Improved Reliability: Can calibrated confidence scores guide misclassificaiton detection

Retention: Sim2Real adaptation performance should be unaffected

‘/?educed Miscalibration & Overconfidence: L.ess overconfident mistakes
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Thank You! Questions?
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