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Who am |1? «»

Originally from the island of Cyprus

Served 2 years in Cyprus Special Forces

UCSB Grad 21’ (Physics)

Interned at Odyssey CS, NodeDistrict, Leela Al

Co-founded a health tech company called Calibrex

Interested in using Al to make scientific discoveries (particularly in

Neuroscience)
o  Was working for the Smith Neuro Lab as an undergraduate at UCSB

Currently a 2nd year PhD within UCSB NLP Group (CS), working across
machine learning (Dr. William Wang) and neuroscience (Dr. Spencer
Smith)

| like to play the guitar and greek bouzouki



Multimodal and Multitask Neuroscience Experiments

Joseph Canzano, Smith LAB (UCSB)

www.slslab.org



https://docs.google.com/file/d/17yucfluU0ZFIx7Dv_FWC6b4xYUYUdfks/preview
http://www.slslab.org

Multimodal and Multitask Neuroscience Experiments

Naturalistic Complex 3 )
.’ Visual Nawgatlon ! Generate Spikes
1
s B I e TR Y
| ! f
E i j—b> ] = '| h
! Multi-Region i ‘_A__A
E Brain Imagmg Locomohon ] =
: i ) Decode Variables
A s : c i
: ®‘ ] ‘, : s -
: A ‘ 'l : ! > g —
i ; I =
|
i i ! 3
i ) ! o . e
! e | = Align Modalities
! 4
E Eye Tracking Reward : s
! i —
|
! |
! I
’ & ; :
' —— ) |
: — Miss Hit /

Goal: Build a data-driven, flexible framework to inspire new, large-scale, multimodal Neuroscience research



Neuroscience + Al Landscape



The current Neuroscience + Al landscape

Analysis Tools
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Neuroscience-inspired Al




Representation Learning of Population Activity
using Contrastive Learning a
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Learnable latent embeddings for joint
behavioral and neural analysis, Schneider, Lee
etal, (2022)



The current Neuroscience + Al landscape

Analysis Tools Decoding Applications
Cebra LFADS
Deep
Interpolation POYO-1

Parallel-Path Resnets

MLP CNN LSTM Attention .

Di Carlo V1/CNN

Neuroscience-inspired Al Al-inspired Neuroscience




Representational Similarities between ANNs and
Mammalian Brain

Validating Brain Principles in code

(@) (Ypregie  (b) (ventral) VISIm VISp ViSpm
Train 2-path resnet network s | +"-... ;3‘5;’ ‘ ‘:.‘ ! *:H +
e Compare representations to dorsal/ventral g g 3i:''t' ¢, om0 e RFEIEIY:
stream data P Gorsa) viss  visam I
. . . = ’ LN | + * + ‘4 I 4 1 | T
e 2-path ResNet splits into representations s s A il
that resemble ventral and dorsal streams — e O [ N 2
| input Layers P ineut Layers top

The functional specialization of visual cortex
emerges from training parallel pathways with
self-supervised predictive learning.
Bakhtiari et al., (2021)

Opportunity: How about we constrain model using the brain data itself?



Analysis Tools

Cebra

Deep
Interpolation

Decoding Applications

LFADS

POYO-1

Neuroformer

MLP CNN LSTM Attention

Neuroscience-inspired Al

Parallel-Path Resnets

Di Carlo V1/CNN

Al-inspired Neuroscience

The current Neuroscience + Al landscape

Di Carlo
V1/CNN Cebra Neuroformer
= >

Scale (parameters + data)



Performance

The Bitter Lesson: Scale

Compute + Data drives the vast majority of Al progress (Richard Sutton, seminal RL
\Professor)

GPT-3
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Transformers

Generalization of an MLP

original i i
et hello world!

Discretize data into tokens s [hello', ‘world:, 1]

token 17592, 2088, 999]

1Ds

Process feature representations by iteratively
unraveling the relationships between the
discrete tokens using attention

Trained to predict the next word -
across the whole internet.

Layer:| 5 3| Attention:| Input - Input  §
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didn_ didn_
i L5
cross_ cross_
the, the_
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Vawani et al., 2017
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Dive into Deeplearning, 2023



Recurrent Networks vs. Transformer Networks

MLP Decoder

[
)

Decoder

[
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Decoder
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RNN Tries to squeeze all previously Autoregressive Transformer sees all
seen information inside a hidden state. previous information at each time
step. (within a sliding window)

<

Solves: Sparseness in Time



Recurrent Networks vs. Transformer Networks

Actually - it's mostly about scale.

e You cannot stack enough layers of RNNs to reach the size of GPTs.
e Hidden state is an information bottleneck.
e Causes exploding/vanishing gradients which make training unstable.

O voon o,

VT W VT ) VT . I W is large = exploding gradients
SOQ :> w O - IW O — O S

uT Unfold U TU I W is small = vanishing gradients

I-I 'tl

RNNSs are typically stable at 3-5 layers. GPT-3 has 96 layers.



Transformers and Multi-Modality

Unlike Models such as CNNs, the transformer makes little assumptions about the input modality (weak inductive bias).

e Proved effective at also processing images, | Tt

sound and more

|
o)) ) o) ) )

Lincar Projection of Flattened Patches )

] O O T
= o ——— I
e

Dosovitskiy et al., 2021

“the woman is working on her computer at the desk”
W 1

e Ledto performant models which can
combine multiple modalities

“working”

Lee et al., 2021

LN o] o |
= _ B-8 I
. . . i
e Models trained on multiple modalities \

(multimodal), and multiple tasks (multitask)

1 nu

Reed, Zolna, Perisotto et al., 2022



Building a multimodal model of the brain

Goal: Build a data-driven, flexible framework to inspire new, large-scale, multimodal Neuroscience research

Brain Transformers
Large number of neurons Can learn representations for many
tokens
Sparse Can learn relationships across large

context windows
Diverse number of inputs Modality-Agnostic

Constrained by architecture of brain and Unsupervised Learners
connectivity pattern

Solution: Build a Large multimodal Neuroscience Model! (LNM?!)



Neuroformer

(architecture)

Cosyne 23, ICLR 24



Neuroformer (0 - preliminaries)

Current State Features
Neural History Features
Visual Features
Arbitrary Modality
Masked / Padded Token

Sequence of Neuron firings at current time window
Sequence of Neuron firings within previous time window
Full FOV video stimulus presented to mice within current time window
Any other modality (we want to use pose, eye movement etc)
Attention cannot attend to these positions

Current State Features
Neural History Features
Visual Features
Arbitrary Modality
Masked / Padded Token



Pretraining Objective - Language

Our goal is to predict the next
(w ) given all previous words

most likely word

e
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Pretraining Objective - Language

e QOur goalis to predict the next most likely word

(w ) given all previous words

Attention operation is
permutation equivariant.
Need to bias logits

\/\ +

/\/\ +

PE(POS,2i) = 8in(p08/100002i/dmodel)
PE(pos,2i+1) = COS(pOS/100002i/dmodel)
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Feed predictions back into input




Pretraining Objective - Neuroformer

Our goal is to predict the next most likely neuron (idn)
that will fire and when (t ) given previous spikes

e

Decoder
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Pretraining Objective - Neuroformer (multimodal)

e QOur goalis to predict the next most likely neuron (id) that
will fire and when (dt) given previous spikes and modalities

/ Stimulus (S) \
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Spike (ID + dt) Tokenization

Dr. Che-Hang Yu, Smith Lab (UCSB)

0

Word Tokens » Neuron ID tokens (location)

6

/ 150 dim = 256

ID=25
32

-+

Time » dt tokens (time)

112
360 dim = 256

dt=0.1-0.15
24

Positional » Temporal embedding

ID(25), dt(0.1-0.15)



Neural

Visual

Feature Backbone

Current State Features

e Key-Value codebook, where :
k |D Neural History Features
eys are neuron S Visual Features
-—‘ Token H y Arbitrary Modality
_ Encoding : 6 Masked / Padded Token
e -
+ —@—7 y / 150
ID 25
\ 32
e Randomly Initialized
Convolutions
e Pre-trained ResNet backbone
Convolutions
e Raw Frames




Neuroformer (2 - feature alignment)

Use cosine similarity to maximize
resemblance of coinciding visual and
neural features

-

-

Using Negative examples to contrast our
positive pair avoids collapse.

(1) Contrastive pre-training

-
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Radford et al., 2021

Current State Features
Neural History Features
Visual Features
Arbitrary Modality
Masked / Padded Token



Neuroformer (3 - feature fusion)

Current State Features
Neural History Features
Visual Features
Arbitrary Modality
Masked / Padded Token

Self Attention
Cross Attention

Self Attention
Cross Attention
Self Attention
Cross Attention

|
l
I

“working” “computer” “desk”

Leeetal, 2021



Neuroformer (3 - feature fusion)

Current State Features

Neural History Features

Visual Features

Arbitrary Modality

Q Masked / Padded Token

Cross Attention

Cross Attention
Self Attention

Cross Attention
[ Self Attention |

[ Self Attention I

Cross Attention Maintains shape of Q.

Qg = (B, T, E) Q K v
Kdim’ V. =(B,S, E) Attention ~ (QK")xV ~ (B, T,E)x (B, E,S)x (B, S, E)=(B, T, E) = Qdim

dim



Neuroformer (3 - feature fusion)

Current State Features
Neural History Features
Visual Features

] ] Arbitrary Modality
|| s s|| s = Masked / Padded Token
%] gl1E] |2]]¢&
Matrix Sizes
Q=(Mx1),K=(nx1),V=(Kk)=(nx1) Normally
where m small, n large O(n?) (quadratic complexity)
. : Ours
Attention formulation (nxn) . .
O(mn) (/inear complexity)

QKNV=(mx1)(xnvxn=mxn)(nx1)=(mx1)



Neuroformer (4 - decoding)

Current State Features
Neural History Features
Visual Features
Arbitrary Modality
Masked / Padded Token

ID
projection

Self Attention

dt
projection
=3

P(id ,t |id

n-17 tn-l’

Probability of each neuronsh‘ilbgpulation to fire at current time given past spikes,
stimulus (and/or other modalities)



Neuroformer

‘ _- Current State Features
Neural History Features
Token —0—"
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Neuroformer - inference
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Self Attention
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Multi-modal feature fusion

Self Attention

v
)
Self Attention

[T} | Cross Attention

[TIT17]—~|Cross Attention

Current State [l] Neural History [[] Visual [[] Arbitrary Modality [l Masked Token []

Self Attention

AR Decoding

Both spatial (ID) and temporal (dt) dimensions need to be predicted



Neuroformer

(results)



Simulated Data - Uncovering neuron connectivity

Simulated dataset of hub
neurons.

Self-attention uncovers
ground-truth connectivity.
Explains 20% variability
(compared to 13% for Pearson

correlation)

Cc

Spike data from ground truth network
Predictions from Neuroformer
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Hub Simulation experiment. Dr. Yiyi Yu



Simulated Data - input-neuron connectivity

e Simulated dataset of 1000 neurons, each receiving one of 1000 different periodic inputs.

e (Cross-attention reveals the 1-to-1 input mapping.

= Channel Attention

Input Recurrent Net 1 428 1 438 s Neuron ID
ALY >< 9
A 3 —t——— 0
— : & 0 200 400 600 800 1000 0 200 400 600 800 1000
455 S 830 819
1 = ] 1
k3]
<
0 e 0 0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Input channel



Multi-region recordings of mouse cortex

e Mouse watching a naturalistic video.

e Neuroformer can generate high-precision simulations of ground-truth trials over 32
seconds auto-regressively.

e (Cross-attention between neurons and video stimulus reveal salient features.

Multi-region calcium imaging b o e e b < e b
g{‘\‘: Iy [H g 2 "1\ o W “i { i ("
1 N - ]
- %ln com.0.73 | S o 052 I
(—— P M o 1 2 A el J..A.. AL
10s
2p calcium imaging = _ . - ol ns B
386 Neurons y 3 b I T T T

0.6 Gratings  Naturalistic video Ly Gratings  Naturalistic video

V1+AL

0.4

Neuron 1, Layer 0, Head 0 Neuron 1, Layer 0, Head 1  Neuron 10, Layer 3, Head 1 Neuron 62, Layer 1, Head 0

Simulations of full trials on real data (V1 + AL). (Data: Yu et al., 2022)

0.2f

0 .- .‘.:‘:~- :
-0.2!

Test-prediction correlation o
(Quality of the model fits)

0 02 04 06 08 1
Train-test correlation
(Variability of the ground truth data)



Multi-region recordings of mouse cortex

Mouse watching a naturalistic video.
Neuroformer can generate high-precision simulations of ground-truth trials over 32
seconds auto-regressively.

e (Cross-attention between neurons and video stimulus reveal salient features.

Neuron-Video Cross-Attention as computed by a trained model



Multi-task Training and Decoding

e Neuroscientists are in possession of some of the most unique and valuable data out there.

e What can a task-driven model do with them?

/ Naturalistic Complex \\

: Visual Navigation ! Generate Spikes

: e A (R

: i —> 1 'lll - l| :l
2p Imaging, i Multi-Region i ,.A._Aq
2000 Neurons i Brain Imaging Locomotion | >

l @) i o Decode Variables

: I i < e
Lateral visual | Py = °c
cortex : R o

: 1 1] 1 q

: Y il 2
L2/L3 Medial, | | = Align Modalities
V1, hlgher visual i Eye Tracking Reward i i G
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I“ e/;> Miss Hit /I: N

Data: Joseph Canzano, Smith LAB (UCSB)



Speed Decoding

Pearson Corr (1)
Model Lateral Medial

Lasso Regression 0.62 0.73
GLM 0.69 0.81
MLP 0.83 0.85
Bidirectional GRU  0.83 0.88
Neuroformer 0.95 0.97

Speed decoding, benchmarks. Medial (top), Lateral (bottom)

Lasso Reg. GLM Bi-directional GRU Neuroformer
—— Lasso Reg. — GLM —— Bi-directional GRU ~—— Neuroformer
— True — True — True — True
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
—— Lasso Reg. ——— Neuroformer
1 — True — True
— GLM —— Bi-directional GRU
— True — True
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200



Joint Training + Decoding on Many Objectives
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Unsupervised Learning and Finetuning of Speed

e How much of the speed information is directly learnt from the spike prediction pretraining?

ais b = c
- 0,57 = No Pretraining, 1% 1.0 1 Finetune, 1%
r= U, == No Pretraining, 10% Einatune, 0%
1.0 { p< 0.001 c 08 - Finetune, 1% fnetune, :
g - = Finetune, 10% fs‘ 0.9 1 wsssm No Pretraining, 1%
6B g = Full Training é msmmm No Pretraining, 10%
- S 0.6 - £
% (&) 8 0.8 A
= 0.0 £
g g 04 :
a s 4 S =)
-0.5 52 < 0.7
3 2
5 0.2 o
-1.0 o 0. 0.6 A
-1.5 T T T T 0.0 = T T T T T T
1:5 1.0 -0.5 0.0 0.5 1.0 1:5 0 20 40 60 80 100
True Model Epoch

Few-shot speed accuracy for pretrained vs. randomly initialized models



Linear Probing Across Modalities, Tasks and Time

Feature R2

Random 0.0521

Past State 0.2299

Past State + Stimulus 0.5341

Past State + Stimulus + Current State  0.6357 m/s

R? values for linear probing of speed

using different representations ,\
Sthonre E_'Token -:D
tmmm

<~ 7 Probing speed at different model stages

Multi-modal featule fusion AR Decoding

Feature

Encoding Contrastive ™~
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(alignment)

Self Attention
Self Attention
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Current State [[] Neural History [[] Visual [[] Arbitrary Modality [l] Masked Token [_]
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Code

e New modalities and tasks can be easily incorporated: www.github.com/a-antoniades/Neuroformer

{ 1=
'‘data': {
'spikes': (N_neurons, N_timesteps), # np.ndarray, required key
'frames': (N_frames, N_timesteps), # np.ndarray, optional key

'behavior variables': (N_timepoints,), # np.ndarray,
'intervals': (N_timepoints,), # np.ndarray, Denoting all intervals/time bins of tF
'train_intervals': (N_timepoints,) , # np.ndarray, The corresponding train interve
'test_intervals': (N_timepoints,) , # np.ndarray, The corresponding test interval
'finetune_intervals': (N_timepoints,) , # np.ndarray, The corresponding finetune i
'callback': callback() # function

Neuroformer data config file o L o i
Modalities: Any additional modalities other than spikes and frames.

Modality Type: The name of the modality type. (for example behavior)
Variables: The name of the modality.
Data: The data of the modality in shape (n_samples, n_features).
dt: The time resolution of the modality, used to index n_samples.

Predict: Whether to predict this modality or not. If you set predict to false, then i
Objective: Choose between regression or classification. If classification is chosen,

Neuroformer model config file


http://www.github.com/a-antoniades/Neuroformer

Future Directions



Al » Neuroscience

e Neuroformer proposes a new approach to
Neuroscience analysis.
o Large scale data
o Diverse data (modalities / tasks)
o Realistic Experimental Setups
o Black-box analysis
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Neuroscience » Al

e Neuroscientists are in possession of some of the most unique and valuable data out there.

e What can a task-driven model do with them?

Naturalistic Complex
Visual Navigation
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°
co n CI u s I O n Al » Neuroscience » Al » Neuroscience ...

e The bitter lesson taught us that in order to learn complex relationships, we need a vast amount
of data.

e | think this applies to both machine learning models, but also complex neuroscience
theories.

e By integrating the power of valuable neuroscience datasets, we can make many new
scientific discoveries.

e And perhaps even models with new/better abilities...

¥ e

With the capabilities we have today to harness the power of
large-scale data, the field of Neuroscience + Al is
wide open (imo).
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Thanks!

UCSB NLP GROUP
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Dr. Yiyi Yu Joseph Canzano Dr. Che-Hang Yu Dr. Spencer LaVere Smith Dr. William Wang

@anton_iades www.github.com/a-antoniades/Neuroformer



http://www.github.com/a-antoniades/Neuroformer

