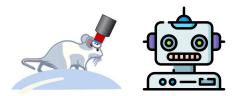
Developing Models for the Next Generation of Neuro Inspired Al Research



Antonis Antoniades (@anton_iades) University of California, Santa Barbara

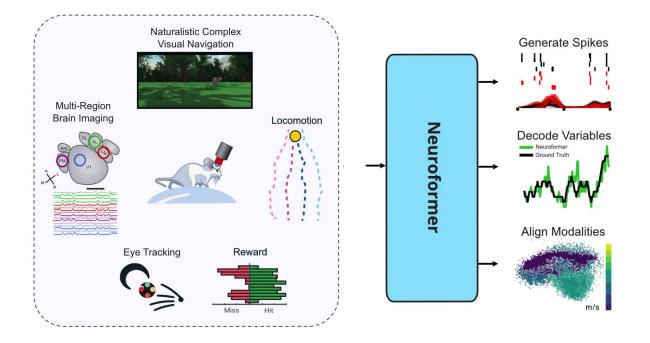
Who am I? 👀

- Originally from the island of Cyprus
- Served 2 years in Cyprus Special Forces
- UCSB Grad 21' (Physics)
- Interned at Odyssey CS, NodeDistrict, Leela Al
- Co-founded a health tech company called Calibrex
- Interested in using AI to make scientific discoveries (particularly in Neuroscience)
 - Was working for the Smith Neuro Lab as an undergraduate at UCSB
- Currently a 2nd year PhD within UCSB NLP Group (CS), working across machine learning (Dr. William Wang) and neuroscience (Dr. Spencer Smith)
- I like to play the guitar and greek bouzouki

Multimodal and Multitask Neuroscience Experiments

Joseph Canzano, Smith LAB (UCSB)

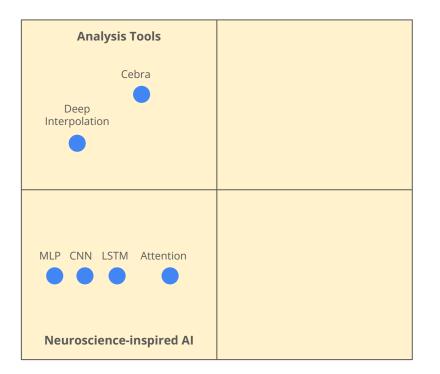
Multimodal and Multitask Neuroscience Experiments



Goal: Build a data-driven, flexible framework to inspire new, large-scale, multimodal Neuroscience research

Neuroscience + AI Landscape

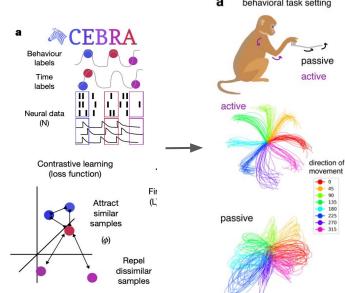
The current Neuroscience + AI landscape



Representation Learning of Population Activity using Contrastive Learning a Dehavioral task setting

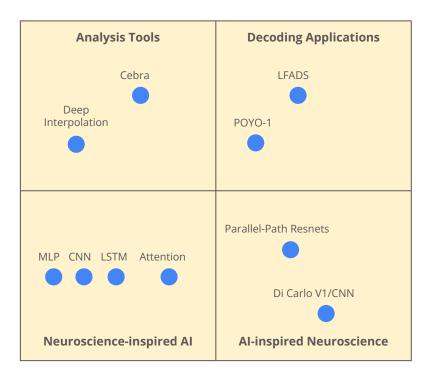
Learn multimodal low-dimensional latents

- Strong vs. Weak Principle
 - Raw vs. Compressed data
- Even **latents** are high-dimensional
- Low-Dimensional Latents, while interpretable, do not provide any extensive insights.



Learnable latent embeddings for joint behavioral and neural analysis, Schneider, Lee et al., (2022)

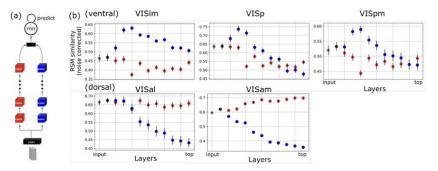
The current Neuroscience + AI landscape



Representational Similarities between ANNs and Mammalian Brain

Validating Brain Principles in code

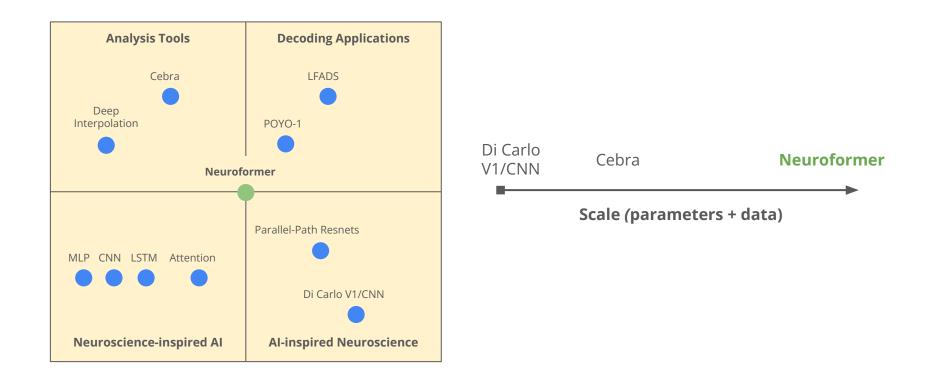
- Train 2-path resnet network
- Compare representations to **dorsal/ventral stream** data
- 2-path ResNet **splits into representations** that resemble **ventral and dorsal streams**



The functional specialization of visual cortex emerges from training parallel pathways with self-supervised predictive learning. Bakhtiari et al., (2021)

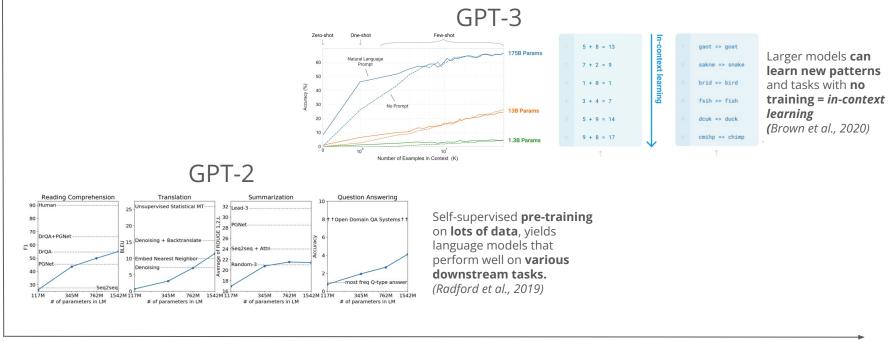
Opportunity: How about we constrain model using the brain data itself?

The current Neuroscience + AI landscape



The Bitter Lesson: Scale

Compute + **Data** drives the vast majority of AI progress (Richard Sutton, seminal RL Professor)



Parameters + Data (log

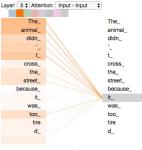
Transformers

Generalization of an MLP

• Discretize data into **tokens** tokens ['hello',

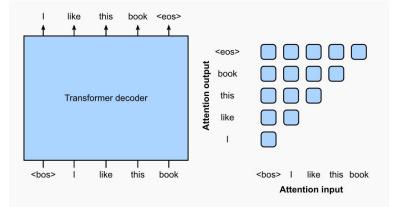
original "hello world!" text "hello', 'world', '!'] tokens ['hello', 'world', '!']

• Process feature representations by iteratively unraveling the **relationships** between the discrete tokens using **attention**



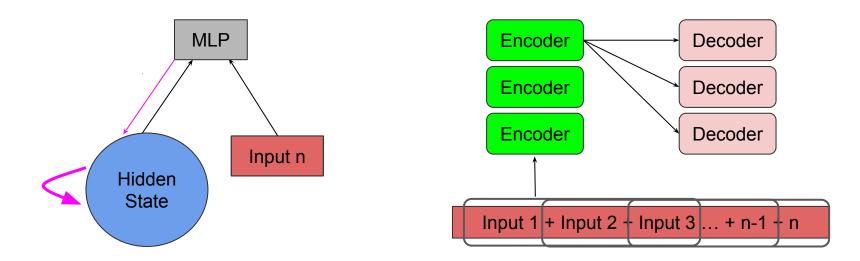
Vawani et al., 2017

• Trained to **predict the next word** - *across the whole internet.*



Dive into Deeplearning, 2023

Recurrent Networks vs. Transformer Networks



RNN Tries to *squeeze* all previously seen information inside a hidden state.

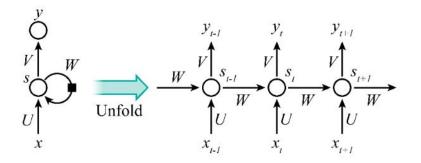
Autoregressive Transformer sees all previous information at each time step. (within a sliding window)

Solves: Sparseness in Time

Recurrent Networks vs. Transformer Networks

Actually - it's mostly about scale.

- You cannot stack enough layers of RNNs to reach the size of GPTs.
- Hidden state is an information bottleneck.
- Causes exploding/vanishing gradients which make training unstable.



W is *large* = *exploding* gradients

W is *small* = *vanishing* gradients

RNNs are typically stable at **3-5 layers**. GPT-3 has **96 layers**.

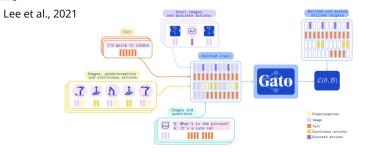
Transformers and Multi-Modality

Unlike Models such as CNNs, the transformer makes little assumptions about the input modality (weak inductive bias).

• Proved effective at also processing *images*, *sound* and more

- Led to performant models which can combine multiple modalities
- Vision Transformer (VIT)

 Models trained on multiple modalities (multimodal), and multiple tasks (multitask)



Building a multimodal model of the brain

Goal: Build a **data-driven**, *flexible* framework to inspire new, large-*scale*, *multimodal* Neuroscience research

Brain	Transformers
Large number of neurons	Can learn representations for many tokens
Sparse	Can learn relationships across large context windows
Diverse number of inputs	Modality- Agnostic
Constrained by architecture of brain and connectivity pattern	Unsupervised Learners

Solution: Build a Large **multimodal** Neuroscience Model! (LNM?!)

Neuroformer

(architecture)

Cosyne 23, ICLR 24

Neuroformer (0 - preliminaries)

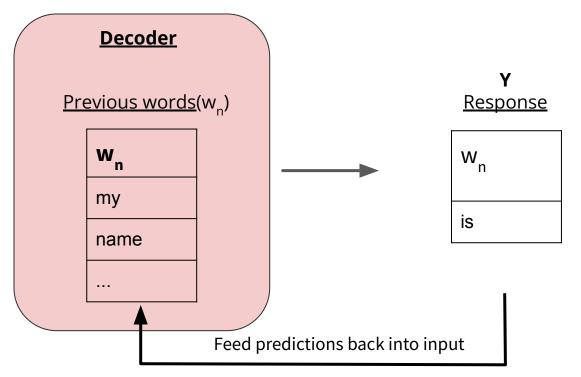
Current State Features Neural History Features Visual Features Arbitrary Modality Masked / Padded Token

Current State Features Neural History Features Visual Features Arbitrary Modality Masked / Padded Token Sequence of **Neuron firings** at **current** time window Sequence of **Neuron firings** within **previous** time window Full FOV video **stimulus** presented to mice within current time window Any other **modality** (we want to use pose, eye movement etc) Attention cannot attend to these positions

Pretraining Objective - Language

 Our goal is to predict the next most likely word (w_n) given all previous words

$$P(w_n | w_{n-1}...)$$



Pretraining Objective - Language

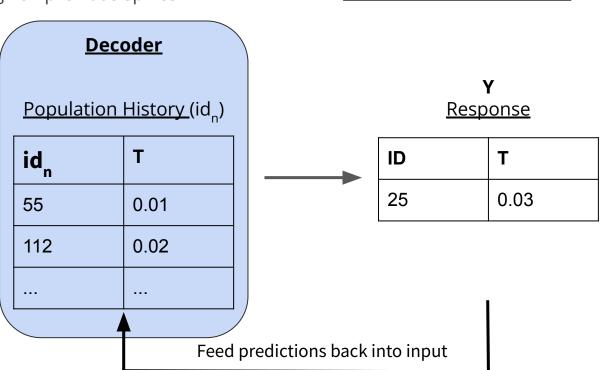
 Our goal is to predict the next most likely word (W_n) given all previous words

$$P(w_n | w_{n-1}...)$$

Decoder Attention operation is <u>Previous words(w_)</u> **Response** permutation equivariant. Need to bias logits W W n ึท my is name +... $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$ $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$ Feed predictions back into input

Pretraining Objective - Neuroformer

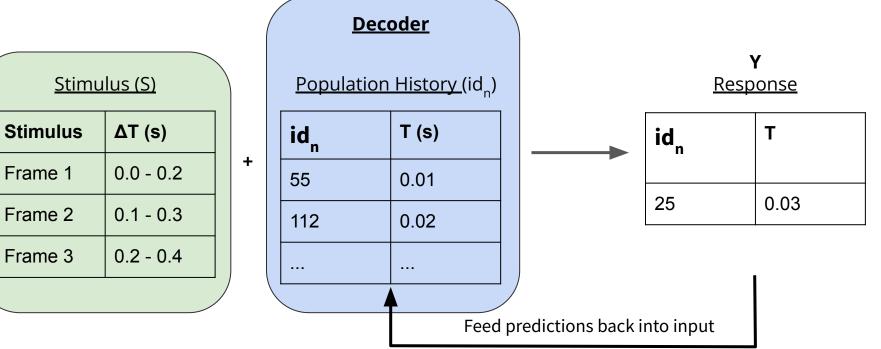
Our goal is to predict the next most likely neuron (id_n) that will fire and when (t_n) given previous spikes



 $P(id_{n}, t_{n} | id_{n-1}, t_{n-1}...)$

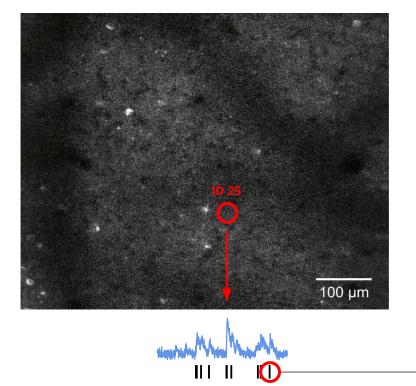
Pretraining Objective - *Neuroformer (multimodal)*

Our goal is to predict the next most likely neuron (id) that P(id_n, t_n | id_{n-1}, t_{n-1}, will fire *and* **when** (*dt*) given previous spikes *and* **modalities** S_{n-1}... Decoder Stimulus (S) <u>Population History (id</u>) <u>Response</u> **Stimulus** T (s) **ΔT** (s) id Т

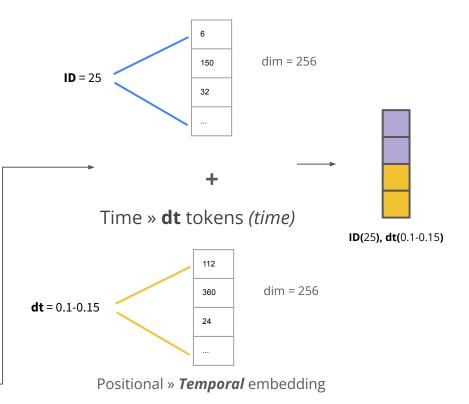


Spike (ID + dt) Tokenization

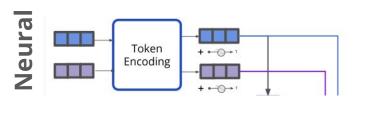
Dr. Che-Hang Yu, Smith Lab (UCSB)

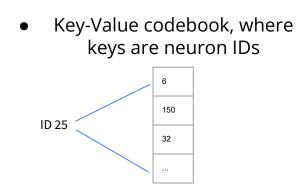


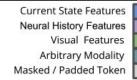
Word Tokens » Neuron **ID** tokens (*location*)

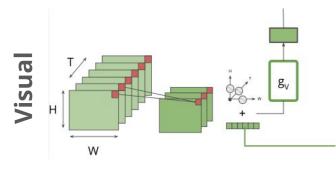


Feature Backbone









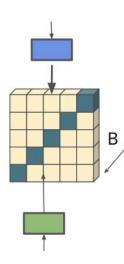
- Randomly Initialized
 Convolutions
- Pre-trained ResNet backbone Convolutions
- Raw Frames

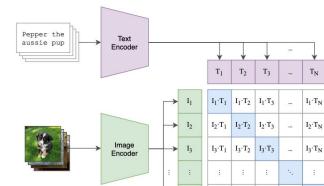
Neuroformer (2 - feature alignment)

Use cosine similarity to maximize resemblance of coinciding visual and neural features

Using Negative examples to *contrast* our positive pair avoids collapse.

Current State Features Neural History Features Visual Features Arbitrary Modality Masked / Padded Token





(1) Contrastive pre-training

Radford et al., 2021

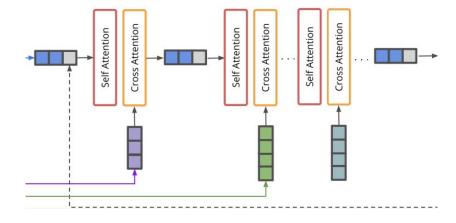
IN

 $I_N \cdot T_1 \quad I_N \cdot T_2 \quad I_N \cdot T_3$

 $I_N \cdot T_N$

....

Neuroformer (3 - feature fusion)

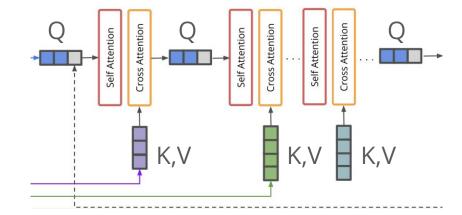


"the woman is working on her computer at the desk"

Lee et al., 2021

Current State Features Neural History Features Visual Features Arbitrary Modality Masked / Padded Token

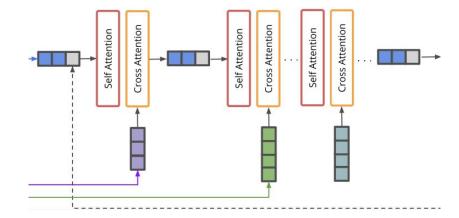
Neuroformer (3 - feature fusion)



Current State Features Neural History Features Visual Features Arbitrary Modality Masked / Padded Token

Cross Attention Maintains shape of Q. $Q_{dim} = (B, T, E)$ QKV $K_{dim}, V_{dim} = (B, S, E)$ Attention ~ $(QK^T) \times V ~ (B, T, E) \times (B, E, S) \times (B, S, E) = (B, T, E) = Q_{dim}$

Neuroformer (3 - feature fusion)



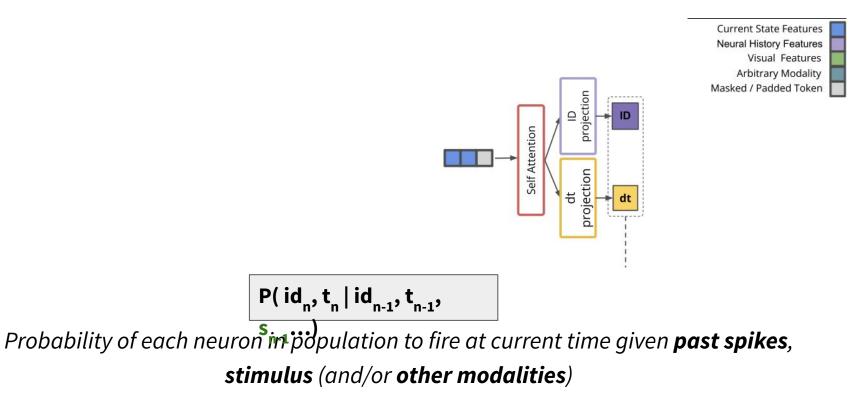
Current State Features Neural History Features Visual Features Arbitrary Modality Masked / Padded Token

Matrix Sizes Q = (m x 1), K = (n x 1), V = (k) = (n x 1) **where** *m small*, *n large*

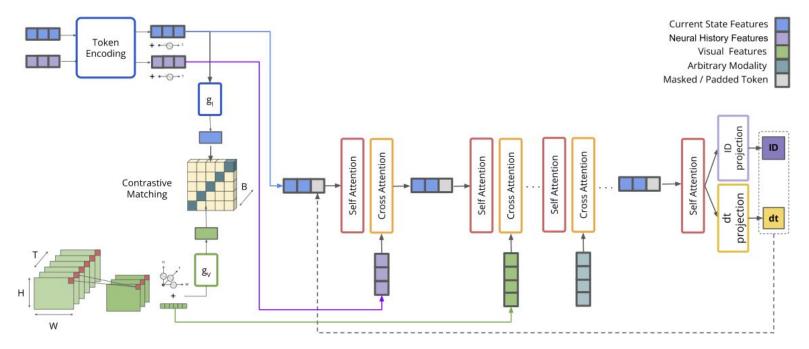
 Attention formulation
 $(n \times n)$
 $(QK^T) V = (m \times 1) (1 \times n) (v \times n) = (m \times n) (n \times 1) = (m \times 1)$

Normally O(n²) *(quadratic complexity)* **Ours** O(mn) *(linear complexity)*

Neuroformer (4 - decoding)



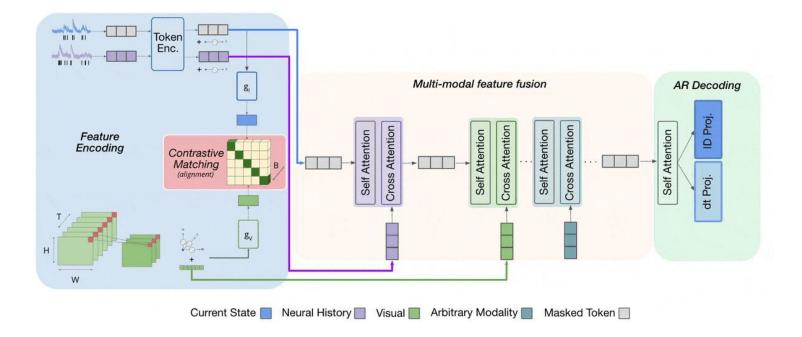
Neuroformer



Contrastive Learning between neural/visual features $L_{vnc} = \frac{1}{2} \mathbb{E}_{(F,I) \in d}[H(\boldsymbol{y}^{fi}(F), \boldsymbol{p}^{fi}(F)) + \boldsymbol{y}^{if}(I), \boldsymbol{p}^{if}(I))]$ Maximum Likelihood on id, dt:

 $L_{ce(I)} = \frac{1}{2} \mathbb{E}_{(I)\sim d} H(\boldsymbol{y}_{I}, \boldsymbol{p}_{I}) \qquad L_{ce(dt)} = \frac{1}{2} \mathbb{E}_{(dt)\sim d} H(\boldsymbol{y}_{dt}, \boldsymbol{p}_{dt})$

Neuroformer - *inference*



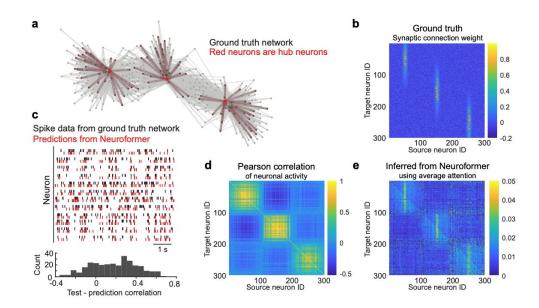
Both spatial (ID) and temporal (dt) dimensions need to be predicted

Neuroformer

(results)

Simulated Data - Uncovering neuron connectivity

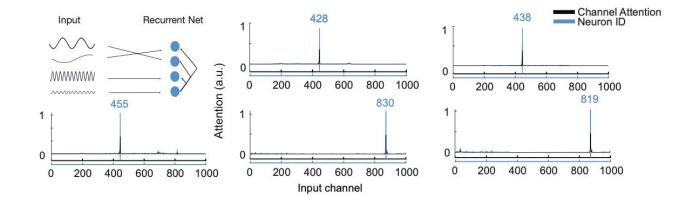
- Simulated dataset of hub neurons.
- Self-attention uncovers ground-truth connectivity.
- Explains 20% variability (compared to 13% for Pearson correlation)



Hub Simulation experiment. Dr. Yiyi Yu

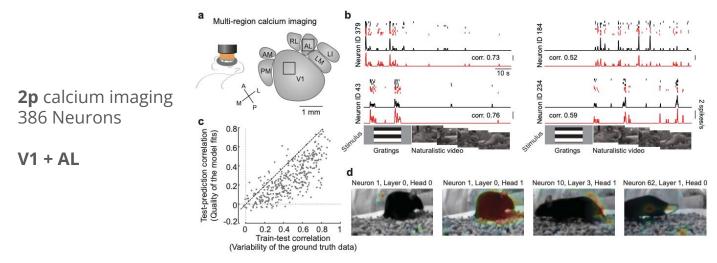
Simulated Data - input-neuron connectivity

- Simulated dataset of 1000 neurons, each receiving one of 1000 different periodic inputs.
- Cross-attention reveals the **1-to-1 input mapping**.



Multi-region recordings of mouse cortex

- Mouse watching a naturalistic video.
- Neuroformer can generate **high-precision simulations** of ground-truth trials **over 32 seconds** auto-regressively.
- Cross-attention between neurons and video stimulus reveal salient features.



Simulations of full trials on real data (V1 + AL). (Data: Yu et al., 2022)

Multi-region recordings of mouse cortex

- Mouse watching a naturalistic video.
- Neuroformer can generate **high-precision simulations** of ground-truth trials **over 32 seconds** auto-regressively.
- Cross-attention between neurons and video stimulus reveal salient features.

Neuron-Video Cross-Attention as computed by a trained model

Multi-task Training and Decoding

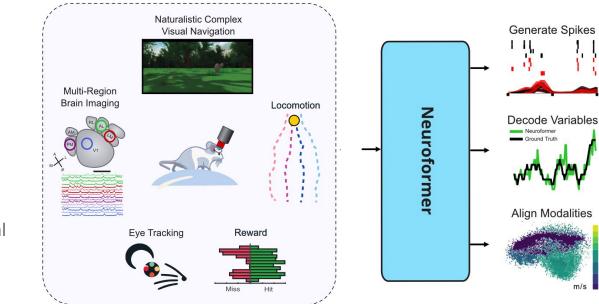
Neuroscientists are in possession of some of the most unique and valuable data out there.

> Neuroforme Ground Truth

What can a task-driven model do with them?

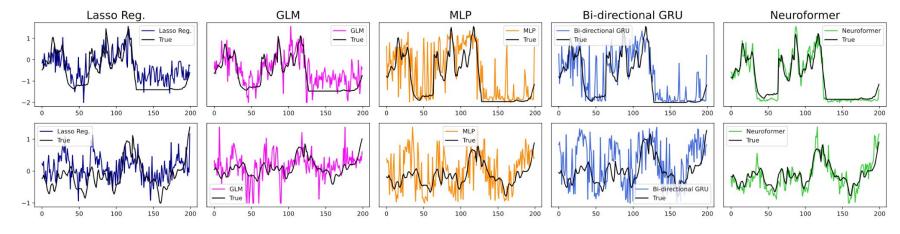
Lateral visual cortex

L2/L3 Medial, V1, higher visual areas



Data: Joseph Canzano, Smith LAB (UCSB)

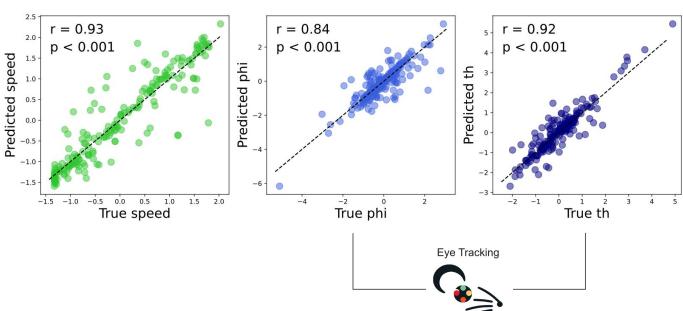
Model	Pearson Corr (r)		
	Lateral	Medial	
Lasso Regression	0.62	0.73	
GLM	0.69	0.81	
MLP	0.83	0.85	
Bidirectional GRU	0.83	0.88	
Neuroformer	0.95	0.97	



Speed decoding, benchmarks. Medial (top), Lateral (bottom)

Speed Decoding

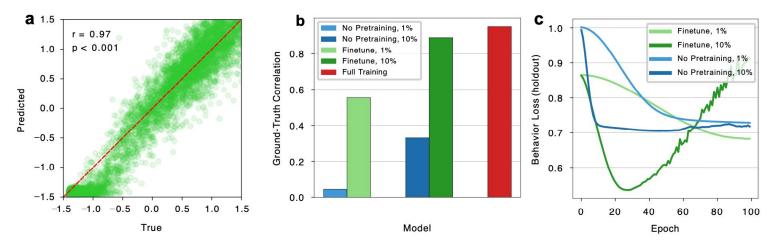
Joint Training + Decoding on Many Objectives



Visnav lateral Multitask Decoding - Speed + Eye Gaze (phi, th)

Unsupervised Learning and Finetuning of Speed

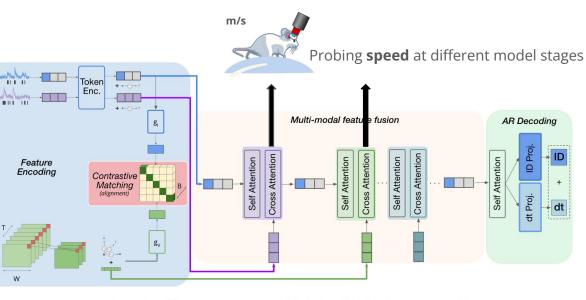
• How much of the **speed** information is directly learnt from the spike prediction **pretraining**?



Few-shot speed accuracy for pretrained vs. randomly initialized models

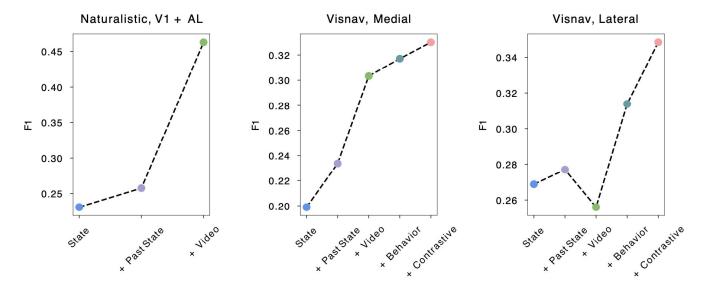
Linear Probing Across Modalities, Tasks and Time

Feature	R^2	
Random	0.0521	
Past State	0.2299	
Past State + Stimulus	0.5341	
Past State + Stimulus + Current State	0.6357	m/s
R ² values for linear probing of using different representation		



Effect of Model Components

• Each subsequent **component** improves response **prediction** performance.



Response Prediction F1 Score with each added component

Code

New modalities and tasks can be easily incorporated: <u>www.github.com/a-antoniades/Neuroformer</u>

 Neuroformer data config file
 Modalities: Any additional modalities other than spikes and frames.

 Modality Type: The name of the modality type. (for example behavior)

 Variables: The name of the modality.

 Data: The data of the modality in shape (n_samples, n_features).

 dt: The time resolution of the modality, used to index n_samples.

 Predict: Whether to predict this modality or not. If you set predict to false, then i

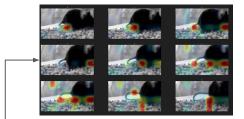
 Objective: Choose between regression or classification. If classification is chosen,

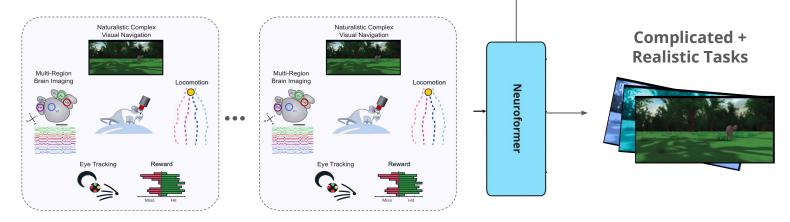
Future Directions

AI » Neuroscience

- Neuroformer proposes a new approach to Neuroscience analysis.
 - Large scale data
 - Diverse data (modalities / tasks)
 - Realistic Experimental Setups
 - Black-box analysis

Deeper Representational Analysis

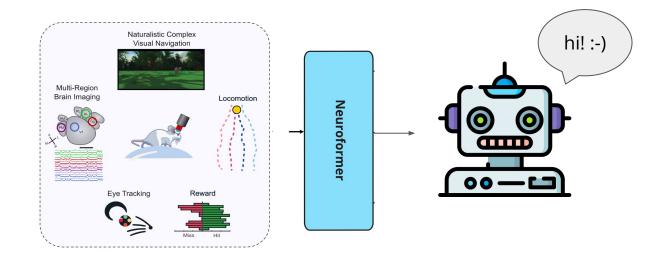




More experiments + Data + Compute

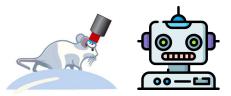
Neuroscience » Al

- Neuroscientists are in possession of some of the most unique and valuable data out there.
- What can a task-driven model do with them?



Conclusion AI » Neuroscience » AI » Neuroscience ...

- The bitter lesson taught us that in order to learn complex relationships, we need a vast amount of data.
- I think this applies to both **machine learning models**, but also complex **neuroscience theories**.
- By integrating the power of valuable **neuroscience datasets**, we can make many **new scientific discoveries**.
- And perhaps even models with **new/better abilities**...



With the capabilities we have today to harness the power of large-scale data, the field of Neuroscience + Al is **wide open** (imo).

Thanks!

Dr. Yiyi Yu

Joseph Canzano

Dr. Che-Hang Yu

Dr. Spencer LaVere Smith

Dr. William Wang