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TLDR: We filter web-scale datasets used for 
training CLIP to learn better visual 
representations and achieve state-of-art 
zero-shot accuracy on vision tasks.

T-MARS is based on filtering out images dominated by 
text features.

1. Text Detection: Perform text detection using an off-
the-shelf OCR model.

2. Text Masking: In-paint the pixels where text is 
detected with average nearby pixel value.

3. Re-scoring & Filtering: Retain images whose 
corresponding *masked* images have a high CLIP 
similarity score with the original caption, i.e. have 
visual features correlated with the caption.

T-MARS for Web Data Curation

A closer look at Web Data

• Web-images contain text inside them.
• Often, the text is the only feature 

correlated with the caption (Category 5).
• Such images promote the model to learn 

OCR and not visual representations

• T-MARS outperforms the top of the 
leaderboard on DataComp (a data filtering 
benchmark) by 6.5% on ImageNet.

• Accuracy gains linearly increase as data 
and compute double from 2M to 64M 
samples from the LAION dataset.

• Images with text as the only predictive feature 
hurt as much as adding mislabeled examples 
to the dataset.
• Images with both visual & text features are as 

useful as those with no text & should not be 
removed from the dataset.
• With the ML community focused on scaling up 

datasets, this shows that pruning off ‘bad 
data’ can have 3× more utility than adding 
more ‘good’ samples.
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Other Contributed Baselines 
We also propose 2 approaches drawing insights from 

the literature on hard example mining:
• C-SSFT: Identify mislabeled examples based on 

change in CLIP score when finetuning a base 
scoring model on a held-out set

• C-RHO: Prioritize training on samples with low 
validation model loss but high training loss. 

Utility of Various Data Categories

New work on Diminishing Utility of 
Different Data

TLDR: High-quality data is limited 
and loses utility with repetitions. 
So how to determine the optimal 
data curation strategy à scaling 
laws for web data curation!!

Scaling Laws for Data Filtering -- Data Curation 
cannot be Compute Agnostic
(Best Paper Award at DPFM ICLR Workshop)

Scaling Trends


