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PDEs (Partial Differential Equations)
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Fluids Solid Mechanics

Electric/Magnetic field

Climate Heat transfer Protein



AI for PDE
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Learning maps from parameters to PDE solutions using neural networks

Neural operator



• DeepONet

• MIONet

• POD-DeepONet…

• FNO

• GeoFNO

• MWT, MG-TFNO

• Transformer 

• Galerkin Transformer

• Oformer

• GNOT

DeepONet

Neural Operators
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The development of neural operators

FNOOFormer



Problem Background
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We close this section on forward modeling 

with a discussion of challenges faced by 

neural solvers that have largely been 

unaddressed by current works.

A primary limitation of learned solvers 

is the requirement of an adequate 

number of training data generated by 

costly numerical solvers, which is 

particularly problematic at the industry 

scale.

---“Artificial Intelligence for Science in 

Quantum, Atomistic, and Continuum Systems”

Shuiwang Ji

In recent years, with the reascendance of 

deep learning, it has become popular to 

learn PDE solvers circumventing the 

lengthy and often tedious process of solver 

design. But we are left with a proverbial 

‘chicken-and-egg problem’. From where 

do we obtain the abundant data needed 

to train said neural solvers? It has to be 

generated with a classical solver, after 

all.

---“Lie Point Symmetry Data Augmentation for 

Neural PDE Solvers”

Max Welling

The primary limitation of neural operators

1. PDE datasets are not general; each PDE type needs its own dataset.

2. Training requires a lot of data, generated by expensive traditional algorithms.



Motivation
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Solutions of Helmholtz equations with close parameters

Solutions of Possion equations with close parameters
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PDE data set generation process
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Example：2D Possion equation
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Krylov Subspace Method
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Arnoldi relation



Our SKR (Sorting Krylov Recycling)
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SKR: The Sorting Algorithm
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SKR: Krylov recycling 
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Arnoldi relation

SKR Arnoldi relation



Theoretical Analysis
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Convergence Analysis



Theoretical Analysis
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Selection of Recycle Subspaces



Theoretical Analysis
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The Rationality of Sorting Algorithms
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Experiments
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• Baseline
• GMRES

• Datasets
• Darcy flow

• Thermal

• Possion

• Helmholtz

• Preconditon
• None

• Jacobi

• BJacobi

• SOR

• ASM

• ICC

• ILU

• Matrix sizes
• 5-6 variations

• Accuracy
• 5-8 tolerances

• Performance Metrics

• Computational 
Duration

• Iteration Count

• Total

• Nearly 3000
experiments

Thermal Helmholtz

Possion Darcy flow



Experiments
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Main results



Experiments
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Convergence speed analysis (time)



Experiments
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Convergence speed analysis (iteration)



Experiments
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Stability analysis



Experiments
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Ablation Experiment
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Discussion

26

Limitations and Future Prospects

• While this paper predominantly addresses linear PDEs, for other 

types of PDEs, there's a need for designing SKR algorithms 

specifically tailored to these PDE types to achieve optimized 

computational speeds.

• In the context of the sorting algorithm within SKR, there's 

potential to identify superior distance metrics based on the 

specific PDE, aiming to bolster the correlation of the sorted linear 

systems.

• Strategies to broaden the application of the recycling concept to 

other analogous data generation domains remain an open question.




