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Introduction

Background
The application of diffusion models is constrained by the massive parameters and
computational complexity. Even with advanced samplers, diffusion models are not yet
ready for real-time applications. For example, even when executed on a high-performance
platform such as the RTX 3090, Stable Diffusion with the DPM-Solver sampler still takes
over a second to generate a 512× 512 image.
Model quantization employs lower numerical bitwidth to represent weights and
activations, alleviating both memory and computational burdens. For instance, an
8-bit model’s inference speed can be 2.03× faster than that of a full-precision (FP)
model, and the acceleration ratio reaches 3.34× for a 4-bit model.
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However, the challenges associated with low-bit quantization for diffusion models have not
received adequate attention.

Challenges
Post-training quantization (PTQ) is time- and data-efficient but can introduce substantial
quantization errors at low bit-width.
Quantization-aware training (QAT) can recover performance losses at lower bit-width by
fine-tuning but requires original training datasets and significantly more computing
resources, as evidenced by a 2.6× increase in GPU memory consumption (31.4GB vs.
11.7GB) and a 18.9× longer execution time (54.5 GPU hours vs. 2.88 GPU hours) when
fine-tuning LDM-4 on ImageNet 256× 256.
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Method
In this paper, we introduce a data-free and parameter-efficient fine-tuning framework for
low-bit diffusion models, denoted as EfficientDM, which demonstrates the capability to achieve
QAT-level performance while upholding PTQ-level efficiency in terms of data and time.
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Figure: An overview of the proposed EfficientDM fine-tuning framework.
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Quantization-aware low-rank adapter

QLoRA fixes the original quantized weights Ŵ0 and introduces updates as follows:

Y = XŴ0 + XBA, (1)

However, it incurs limitations when activations are also quantized, denoted by X̂. In this case,
the inner product between Ŵ0 and X̂ can be efficiently implemented with bit-wise operations,
whereas the operations involving BA and X̂ are computationally expensive during inference as
BA is full-precision and has the same size as W0.
To address this, we propose Quantization-aware Low-rank Adapter (QALoRA), where the
LoRA weights are first merged with FP model weights and then jointly quantized to the target
bit-width:

Y = QU(X, sx)QU(W0 + BA, sw) = X̂Ŵ, (2)
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Data-free fine-tuning for diffusion models

To alleviate the dependency on the original dataset, we propose a data-free fine-tuning
approach that distills the denoising capabilities of a full-precision model into its quantized
counterpart. We input the same noise xt to both FP and quantized denoising models at
denoising step t and minimize the mean squared error (MSE) between their denoising results:

Lt = ∥µθ(xt, t)− µ̂θ(xt, t)∥2 , (3)

The input data xt is obtained by denoising random Gaussian noise xT ∼ N (0, 1) with FP
model iteratively for T − t steps, as illustrated in the overview figure.
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Scale-aware LoRA optimization
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Figure: The motivation and effect of scale-aware LoRA optimization.

To facilitate the optimization of LoRA weights, we consider the ratio of R = ∇BAL
sw

should be
roughly consistent in each layer.

7 / 10



Introduction Method Experiments

Temporal Activation LSQ (TALSQ)

Inspired by LSQ, we allocate temporal-aware quantization scales for activations and optimize
them individually for each step, which we refer to as Temporal Activation LSQ (TALSQ):

Sx =
{

s0x, s1x, . . . , sT−1
x

}
, (4)

where T is the number of denoising steps for the fine-tuning. Recent advancements in efficient
samplers have significantly reduced the number of sampling steps. Therefore, TALSQ
introduces only a few trainable parameters for a single layer, which is negligible even compared
to LoRA weights (which generally have thousands of parameters per layer).
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Visualization Results on ImageNet

(a) Q-Diffusion (b) Ours

Figure: Samples generated by W4A4 LDM model on ImageNet 256× 256.
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Visualization Results on LSUN

(a) Q-Diffusion (b) Ours

Figure: Randomly generated samples by W4A4 LDM model on LSUN-Bedrooms.
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