Respect the model :

Fine-grained and robust explanation with Sharing ratio decomposition

Sangyu Han, Yearim Kim, Nojun Kwak

Background

- Attribution method
 - An XAI approach that assigns importance to input pixels
 - Until now, a neuron has been considered as a representation unit
 - However, this perspective has difficulties in interpreting neuronal interactions
 - Vulnerable to adversarial attack targeting explanation
- Our contribution
 - Introduce vector perspective that adhere to model inference
 - Robust explanation with State-of-the-Art performance
 - Good result on every activation function

- A neuron is a function of its Receptive Field (RF).
- Since neurons in the same location of its channel share the spatial location, combine them as a vector.
- Denote this vector as Pointwise Feature Vector, the representation unit of CNN.
- PFV encodes its RF.

aboratory

- Each layer transforms PFV vector space
- Relu : nonlinearly compress PFV vector field

$$f = \begin{cases} (x < 0) & f(x) = 0\\ \\ (x \ge 0) & f(x) = x \end{cases}$$

ReLU makes the PFV vector field like pushing field into a box

- Each layer transforms PFV vector space
- Batchnorm : normalize PFV space, then spread each axis and move parallel

Method

• APOP : The contribution to activation pattern should be considered

Method

- APOP : The contribution to activation pattern should be considered
- To consider this, calculate Sharing ratio μ as projection proportion of preactivation PFV

Method

MIPALaboratory

- Effective receptive field(ERF) : the contribution of pixels to form a PFV
- Build a ERF with ERF of PFVs that connected in computation graph
- Final attribution map is weighted sum of encoder output PFV's ERF

$$\mu_{(4,6) \to (5,7)}^{25 \to 27} \cdot ERF_{v_{(4,6)}^{25}} + \mu_{(4,7) \to (5,7)}^{25 \to 27} \cdot ERF_{v_{(4,7)}^{25}} + \dots + \mu_{(6,8) \to (5,7)}^{25 \to 27} \cdot ERF_{v_{(5,7)}^{25}} = ERF_{v_{(5,7)}^{27}}$$

Result

- State-of-the-art performance on several desiderata
 - Localization, Complexity, Faithfulness, and Robustness
- Capture pixel-level fine-grained contribution

	VGG16					ResNet50				
Method	Poi.↑	Att.↑	Spa.↑	Fid.↑	Sta.↓	Poi.↑	Att.↑	Spa.↑	Fid.↑	Sta.↓
Saliency	.793	.394	.494	.093	.181	.654	.370	.488	.063	.172
GuidedBackprop	.892	.480	.711	.022	.100	.871	.498	.741	.022	.112
GradInput	.781	.387	.630	013	.181	.639	.361	.626	018	.178
InteGrad	.869	.416	.618	017	.175	.759	.382	.614	016	.171
LRP_{z^+}	.855	.456	.535	.098	.182	.543	.332	.572	.012	.105
Smoothgrad	.845	.363	.536	005	.190	.888	.396	.556	002	.166
Fullgrad	.796	.362	.334	.107	.203	.938	.387	.262	.123	.689
GradCAM [†]	.945	.431	.466	.175	.583	.946	.424	.411	.128	.757
GradCAM++ [†]	.932	.429	.351	.176	.570	.945	.414	.386	.129	.732
ScoreCAM [†]	.937	.582	.342	.167	.622	.916	.381	.313	.123	.827
AblationCAM [†]	.928	.481	.493	.189	.622	.934	.394	.329	.133	.814
XGradCAM [†]	.896	.406	.446	.181	.576	.946	.424	.411	.126	.753
LayerCAM-low [†]	.869	.425	.446	.175	.450	.934	.411	.379	.128	.734
LayerCAM-high [‡]	.865	.435	.401	.199	.423	.941	.423	.349	.135	.486
SRD-low $(ours)^{\dagger}$.945	.424	.437	.179	.595	.946	.544	.682	.130	.600
SRD-high $(ours)^{\ddagger}$.948	.566	.629	.206	.406	.952	.579	.628⁄	.142	.375
SRD-input (ours)	.925	.561	.788	.069	.099	.953	.576	1	.08	104
								_	ותר	

Result

٠

- Yield highly robust explanation ٠
- Robust to input noise •
 - Defend adversarial attack on explanation Grad × Input Guided Integrated LRP₂+ SRD(Ours) backprop Gradient Original Image Original Target Target Image Manipulated 1.0 1.0 -Ŧ 0.9 0.8 $\stackrel{0.6}{ ext{DOd}}_{ ext{0.4}}$ NISS 0.7 0.6 0.2 t Guided InteGrad LRPz+ ut Guided Backprop InteGrad 0.5 0.0 GradInput LRPz+ Gradient Gradient GradInput SRD (ours) SRD (ours)

Ť

Result

MIPALaboratory

• SOTA performance regardless of activation function

Activation	ReLU	ELU	LeakyReLU	Swish	GeLU	Tanh
GuidedBackprop	0.064	0.025	0.001	0.015	0.030	0.028
GradInput	-0.010	-0.007	-0.005	-0.024	-0.004	-0.006
InteGrad	0.006	0.015	-0.001	-0.008	-0.007	0.014
LRP_{z^+}	0.039	-	-	-	-	-
Smoothgrad	-0.012	0.026	-0.014	-0.023	-0.009	-0.017
Fullgrad	0.038	0.209	0.029	0.171	0.095	0.107
GradCAM	0.005	-0.014	-0.004	0.042	-0.001	0.002
ScoreCAM	0.013	0.052	0.031	0.061	0.010	0.017
AblationCAM	0.020	0.024	0.003	0.015	0.033	0.012
XGradCAM	0.007	0.011	0.018	0.028	0.012	0.017
LayerCAM	0.021	0.042	0.012	0.018	0.007	-0.001
SRD(Ours)	0.078	0.214	0.065	0.194	0.128	0.115

Table 1: Fidelity results on various activation functions. We evaluated the fidelity metric of ResNet50 in CIFAR-100 with different activation functions: ReLU, ELU, LeakyReLU, Swish, GeLU, and Tanh. Our method achieved highest performance on every activation function. The accuracy results for each variant were as follows: ReLU achieved 0.780, ELU reached 0.746, LeakyReLU attained 0.785, Swish recorded 0.756, GeLU yielded 0.767, and Tanh resulted in 0.685.

Thanks for watching

