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Transformer and Space
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what if spatial information is available to transformers
in the same way as temporal order information?




Why space is overlooked?
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Origin of Transformer
& Access to spatial info.

How it benefits?
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Spatial Reasoning and

Episodic Memory for Agent



Home Robot Thought Experiments

Room A Room B Room A Room B

Room C Room D

(b)



SAT with FIFO Memory

* Assume transformer-based agent in spatial environment

» At time step t, we have observation e2?S, time ef"™¢, and location e;°°

* Experience frame x; = sum_embed(eéoc, er'™e, ef bs)
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SAT with Place Memory

* With SAT-FIFO, we can solve spatial reasoning task in Home Robot Experiment! Solved!

* However, naive FIFO memory removes the oldest experience

Room C Room D

(b)

* We introduce SAT with place memory (SAT-PM) that allocates memory slots for each place
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SAT with Adaptive Memory Allocator

* What if we need memory at the beginning of the episode? Or end of the episode? Or at some place?

* To address this 1ssue, we propose Adaptive Memory Allocator (AMA) which 1s a learnable policy
that chooses memory management strategy based on the task type
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Experiment 1. Implicit derivation of spatial information
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Experiment 2. Learning to select memory allocation strategy

Ballet-FIFO: Ask dance in second half
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For each visited room, the agent observes a dance of the dancer
while there is a 16-step delay before dancing (Total 32 steps)
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Experiment 3. Action-conditioned Generation
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Experiment 4. Reinforcement Learning in MiniWorld

Room 2 (Step 6-85) | Room 1 (Step 86-105)

3D Visual Match RL Task
i | 'J

0'(8.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Interaction Steps le7

— SAT-FIFO — SAT-AMA

11



Conclusion

* We introduce SAT for embodied agents, integrating spatial dimension into episodic memory
* We develop SAT-AMA for flexible memory management

* We demonstrate SAT and SAT-AMA applications in various tasks and environments
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Home Robot Thought Experiments

Room A Room B Room A

Room C Room D Room C
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Importance of spatial context in embodied Al

* Episodic memory plays a crucial role in various cognitive processes

* While cognitive science emphasizes the significance of spatial context in episodic
memory, current Al system such as transformer dismisses those properties

* It 1s unclear how to incorporate the spatial axis beyond temporal order alone

* To address this, we explore the use of Spatially-Aware Transformer and investigate
the benefits 1n various tasks
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Experiment 2. Learning to select memory allocation strategy

* To validate SAT-AMA, we introduce Ballet-MultiTask
* Each task requires different allocation strategy (4 different strategies available)

* FIFO, LIFO, LVFO (Least Visited First Out), MVFO (Most Visited Frist Out)

Ballet-FIFO: Ask dance in second half :
___________ Ballet-MultiTask
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For each visited room, the agent observes a dance of the dancer (C)

while there is a 16-step delay before dancing (Total 32 steps)
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SAT with Adaptive Memory Allocator

* So far, we assumed the experience frames are added to each place memory in the FIFO order
* What if we need memory at the beginning of the episode? Or end of the episode? Or at some place?
* This means we require different memory storing strategies depending on the tasks

* To address this 1ssue, we propose Adaptive Memory Allocator (AMA) which 1s a learnable policy
that chooses memory management strategy based on the task type
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Experiment 4. Reinforcement Learning in MiniGrid
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Experiment 6. SAT-AMA in Visual Complex Environment

Supervised Prediction Generation
(a) Top-down view and trajectory (b) Learning curve (a) Generation result (b) Learning curve
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