Large Content And Behavior Models To Understand, Simulate, And Optimize Content And Behavior

ICLR-2024 Spotlight

```
Ashmit Khandelwal*1 Aditya Agrawal*1 Aanisha Bhattacharyya* Yaman K Singla* Somesh Singh Uttaran Bhattacharya Ishita Dasgupta Stefano Petrangeli Rajiv Ratn Shah Changyou Chen Balaji Krishnamurthy

Adobe, BITS, Pilani, IIIT-Delhi, State University of New York at Buffalo
```


behavior-in-the-wild.github.io/LCBM

Shannon's Theory Of Communication: Highlights

Level A. How accurately can the symbols of communication be transmitted? (The technical problem.)

Principle scaled solution characteristic of each level

The Internet

Data generated by internet used to build LLM

LLMs

LEVEL B. How precisely do the transmitted symbols convey the desired meaning? (The semantic problem.)

Level C. How effectively does the received meaning affect conduct in the desired way? (The effectiveness problem.)

The problems we need to solve at the third level

Simulate Human
Behavior
For A Certain Content

Generate Content To Elicit A Given Behavior Use Behavior To
Extract
Signals About Content

Explain Human Behavior

Idea: Why don't we use LLMs transfer learning power to solve the third level?

Large Language Models As Foundation To Enable Transfer Learning

[...] treat every text processing problem as a "text-to-text" problem, i.e. taking text as input and producing new text as output. The main utility of transfer learning is the possibility of leveraging pre-trained models in data-scarce settings

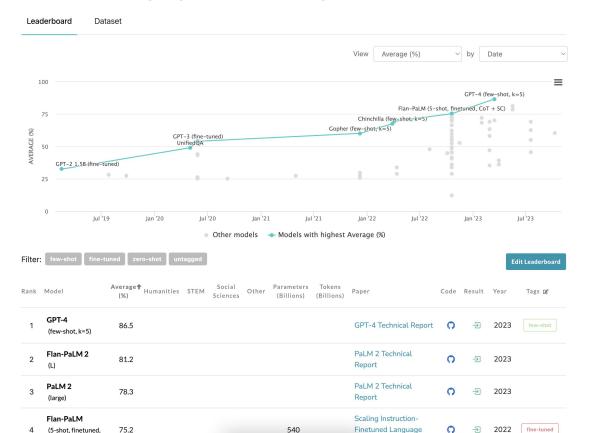
- T5, Raffel et al, 2020

We demonstrate that large gains on these tasks can be realized by generative pre-training of a language model on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each specific task.

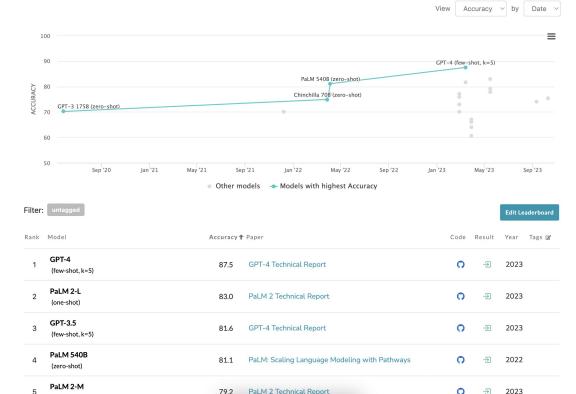
Leaderboard

- Improving Language Understanding By Generative Pre-training, Radford et al, 2018

Multi-task Language Understanding on MMLU



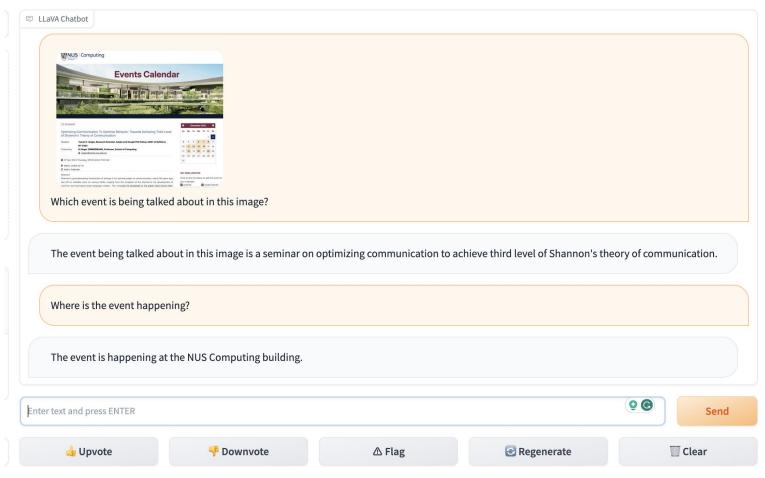
Common Sense Reasoning on WinoGrande



Transfer Learning Power of LLMs in Action Vision Modality Fit Into Text-to-text Paradigm

LLaVA: Large Language and Vision Assistant

[Project Page] [Code] [Model] | ≤ [LLaVA] [LLaVA-v1.5]

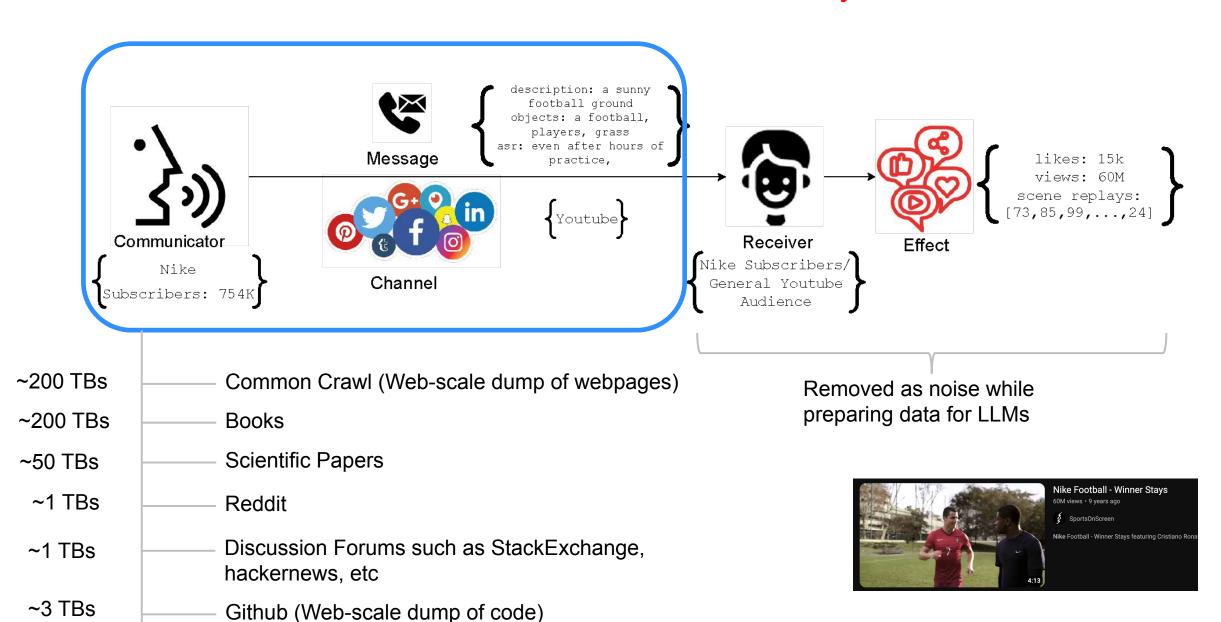


Liu, Haotian et al., Visual Instruction Tuning, NeurlPS, 2023

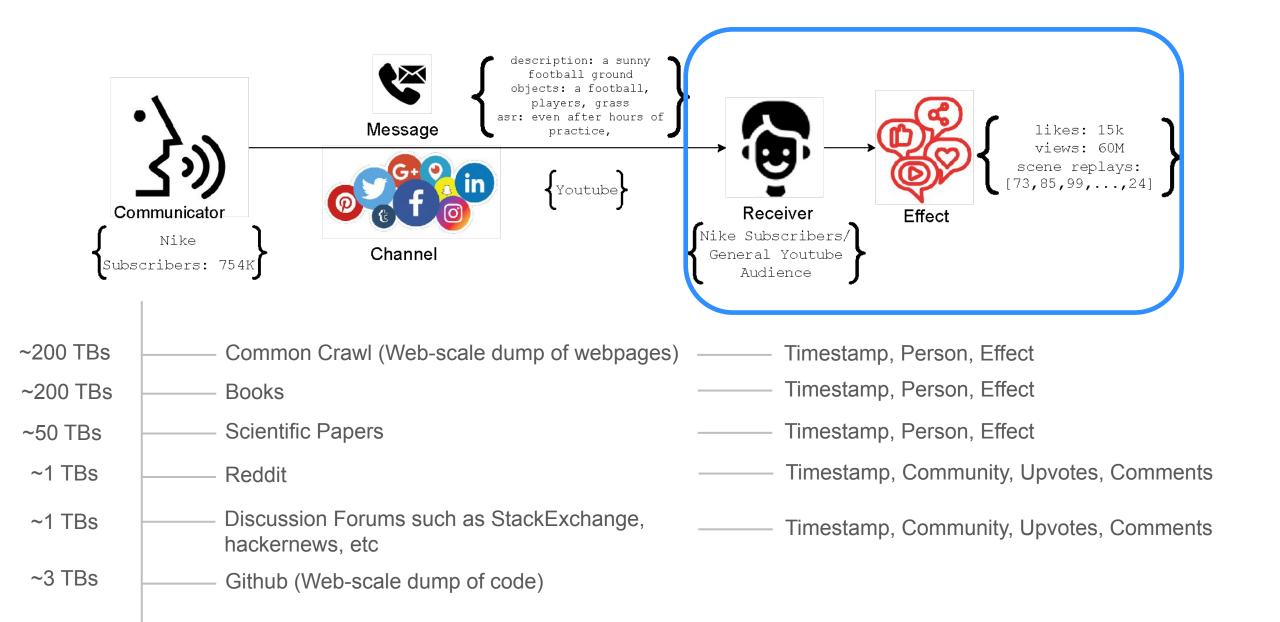
So,

- 1. Have LLMs transfer learnt Behavior already?
- 2. If not, why? And how do we make them transfer learn Behavior using the famous text-to-text paradigm?

Human Communication Process And How LLMs Only See Half The Picture?



Human Communication Process And How We Are Seeing Only Half The Picture?



How Can We See The Full Picture?

Large Content And Behavior Models (LCBMs)

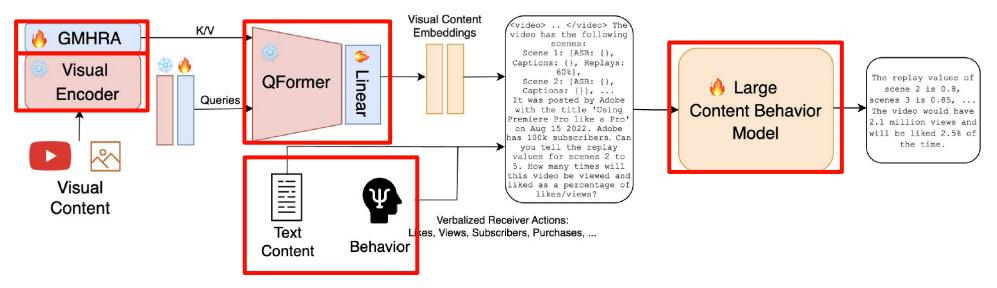


Figure 4: Encoding and predicting content (images, videos, and text) and behavior in the language space. Strategy to behavior instruction fine-tune (BFT) LLMs to create LCBMs. We capture visual concepts through the visual encoder (EVA-CLIP), and world knowledge is through an LLM (Llama). To leverage the rich knowledge of LLMs, we use GMHRA and QFormer to convert visual tokens of ViT to language tokens that Llama can understand. Further, we find that verbalizing the visual stimulus helps Llama to gather information more explicitly than what is provided by ViT+QFormer. We fine-tune the combined model end-to-end to predict 1) behavior given content and 2) content given behavior. Snowflake and fire symbols denote the frozen and unfrozen parts of the architecture.

What Happens If We See The Full Picture?

LCBM Results vs 15x Larger SOTA LLMs – Behavior and Content Simulation

Model	#Params	Training type	Training	RMSE	\mathbf{R}^2	Accuracy
LCBM		BFT	Replay values 3-masked	1.31	0.87	15.89
LCBM	13B	BFT	Replay values 5-masked	1.48	0.82	19.93
LCBM		BFT Replay values 7-maske		1.71	0.78	15.20
LCBM		BFT	Replay values 11-masked	1.55	0.82	13.94
GPT-4	>100B [†]	ICL	10-shot	3.50	-0.01	7.84
GPT-4	>1000	ICL	2-shot	3.58	-0.03	5.39
GPT-3.5	175B	ICL	3-shot	64.40	-256.96	2.48
GPT-3.5	1/30	ICL	2-shot	64.88	-375.83	1.27
Random	-	(=)	-	4.67	0	3.94

Model	#Params	Training	P	Past	Future		Random Window Size				All Masked	
					- -		5 7		7			
			RMSE	Accuracy	RMSE	Accuracy	RMSE	Accuracy	RMSE	Accuracy	RMSE	Accuracy
LCBM		3-BFT	8.12	55.10	15.05	42.42	8.55	61.41	9.91	55.10	-	-
LCBM	13B	5-BFT	11.53	52.06	12.02	53.06	8.13	64.83	9.22	60.26	31.34	17.16
LCBM		7-BFT	16.17	35.61	15.14	44.11	9.02	59.22	10.47	53.84	-	-
LCBM		11-BFT	18.25	30.95	15.05	41.44	10.01	55.15	10.49	52.61	-	-
GPT-4 GPT-4	>100B [†]	10-shot-ICL 2-shot-ICL	34.45 35.05	20.55 19.34	19.51 18.07	36.08 39.33	22.99 17.42	26.99 38.10	27.25 21.26	17.27 28.05	38.52 37.60	14.26 13.73
GPT-3.5 GPT-3.5	175B	3-shot-ICL 2-shot-ICL	34.10 33.36	19.06 18.02	24.71 26.44	27.14 25.42	24.52 23.35	24.81 25.35	26.30 24.68	18.74 21.24	38.77 37.16	13.47 13.39
Random	19	-	34.10	10.00	34.10	10.00	34.10	10.00	34.10	10.00	34.10	10.00

Model	#Params	Accuracy
Vicuna	13B	19.30%
LCBM	13B	48.68%
GPT-3.5	175B	34.98%
Random	-	4%

Youtube Content Simulation

Youtube Behavior Simulation

LCBM Shows Signs of Behavior Domain Adaptation

Model	#Params	Training type	Training	Time Separated	Brand Separated
GPT-3.5	175B	ICL	Few-shot	58.84	64.19
LCBM	13B	BFT	Twitter	74.3	97.69
LCBM	13B	BFT	Twitter and YouTube data	76.87	92.19

Table 9: **Behavior Simulation and Behavior Domain Adaptation**[‡]. Two-way classification accuracies for like prediction on Twitter. Given content, channel, and time, predict behavior (High, Low). We note that LCBM trained on Twitter and YouTube performs better than the one trained only on Twitter, showing signs of performance improvement by domain adaptation. BFT denotes behavior fine-tuning, and ICL stands for in-context learning. The best results over four runs are reported for all models. Best models are denoted in green and runner-ups in blue.

Model Training		Test	BLEU-1	BLEU-2	BLEU-3	BLEU-4	ROUGE-I
GPT-3.5	ICL	Brand Separated	53.95	42.36	31.84	24.28	15.24
GP1-3.5	ICL	Time Separated	57.69	45.11	33.67	25.52	15.27
LCBM	BFT on Twitter	Brand Separated	62.29	46.59	33.98	25.64	14.44
LCDM		Time Separated	70	54.4	41.43	32.48	17.38
LCBM	BFT on Twitter	Brand Separated	64.28	48.1	35.17	26.63	14.83
	+ Youtube	Time Separated	70.23	54.54	41.52	32.54	17.45

Table 10: **Content Simulation and Behavior Domain Adaptation**[‡]. Given behavior, channel, time, tweet media caption as prompt, predict content (tweet text). We note that LCBM trained on Twitter and YouTube performs better than the one trained only on Twitter, showing signs of performance improvement by domain adaptation. BFT denotes behavior fine-tuning, and ICL stands for in-context learning. The best results over four runs are reported for all models. Best models are denoted in green and runner-ups in blue.

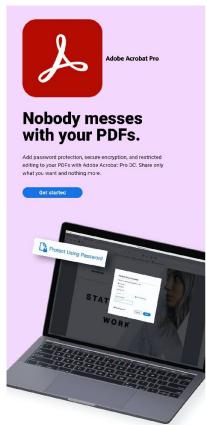
LCBM Shows Signs of Behavior Domain Adaptation

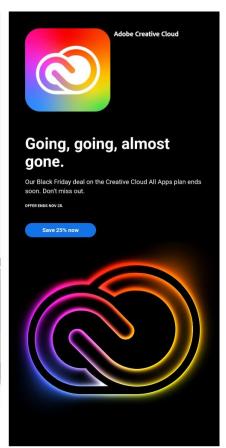
LCBM Results vs 15x Larger SOTA LLMs

in-house Email Marketing								
LCBM Type	Fine-tuned Trained On					Tested On	RMSE	\mathbf{R}^2
	on YouTube?	Unique Emails	Unique Segments	Eı	mail-Segment Pairs			
Domain- Adapted	Yes	100	10		1k	Different Segment	14.47	0.64
In- Domain	No	600	560k		350k	(emails could be same)	25.28	0.55
Domain- Adapted	Yes	100	10		1k	Different Segments	27.28	0.54
In- Domain	No	600	560k		350k	& Different Emails	29.28	0.5

LVU Benchmark

Training	Model	Testing	MSE
Trained	R101-slowfast+NL (Wu & Krahenbuhl, 2021)	Test set	0.386
Trained	VideoBERT (Sun et al., 2019)	Test set	0.32
Trained	Qian et al. (2021)	Test set	0.353
Trained	Xiao et al. (2022)	Test set	0.444
Trained	Object Transformers (Wu & Krahenbuhl, 2021)	Test set	0.23
Zero-shot	LCBM (Ours)	Test set	0.14
Zero-shot	GPT-3.5	Test set	0.03
Zero-shot	Vicuna	Complete dataset	0.44
Zero-shot	LCBM (Ours)	Complete dataset	0.30
Zero-shot	GPT-3.5	Complete dataset	0.02





LCBM Shows Signs of Behavior Domain Adaptation

LCBM Results vs 15x Larger SOTA LLMs

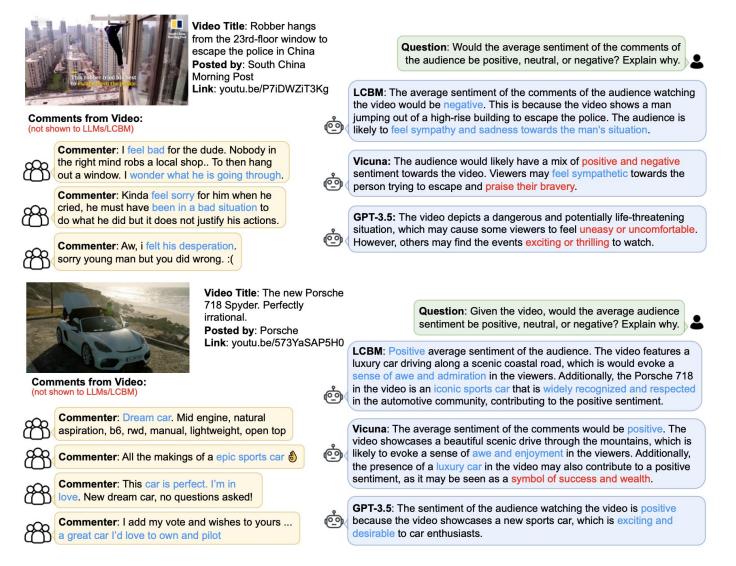


Figure 5: A few examples showing LCBM's ability to understand and explain human behavior of audience sentiment. We also compare it against other models like Vicuna and GPT-3.5.

Thank You

Paper Page

behavior-in-the-wild.github.io/LCBM

