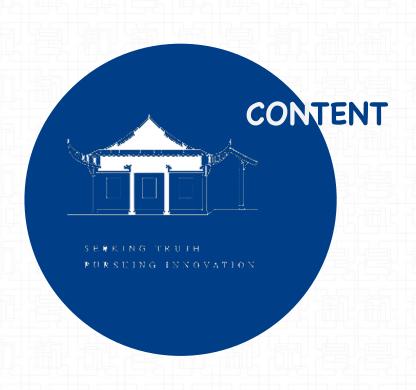


Mol-Instructions: A Large-Scale Biomolecular Instruction Dataset for Large Language Models

https://openreview.net/forum?id=Tlsdsb6l9n

Yin Fang*, Xiaozhuan Liang*, Ningyu Zhang† **, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, Huajun Chen† **

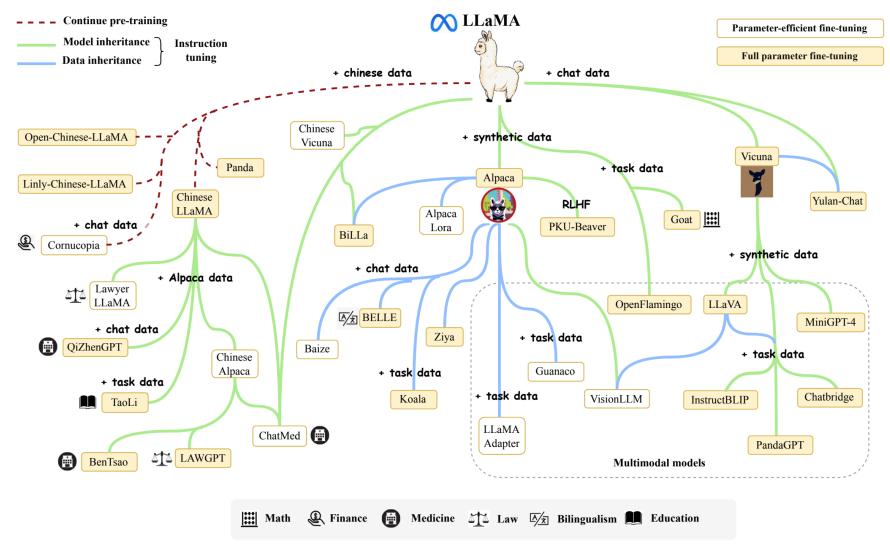


O1 Introduction & Background

02 Data Construction & Analysis

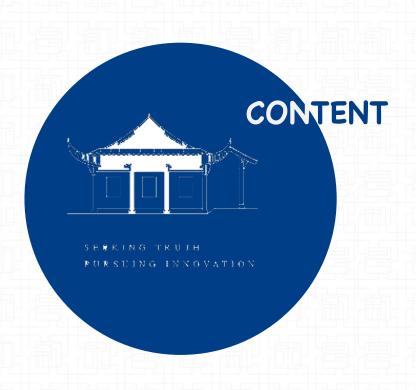
03 Experiments

O1 Introduction & Background


02 Data Construction & Analysis

03 Experiments

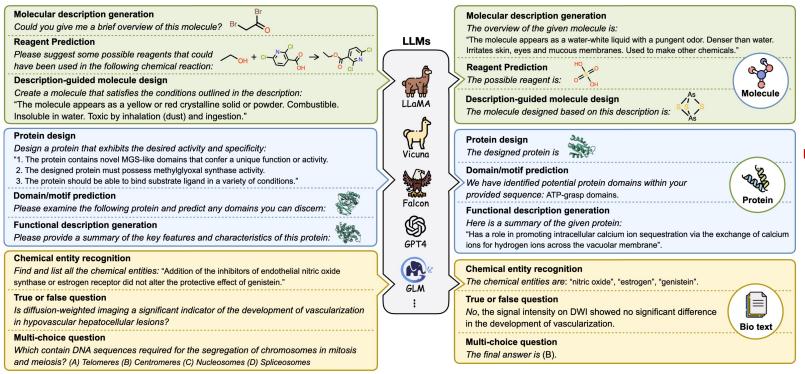
Adapt LLMs for Specific Domains


A Survey of Large Language Models (2023)

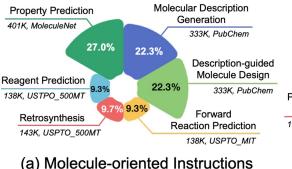
Existing Instruction Datasets

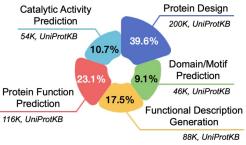
DATASETS	# Type	# Instructions	Collection	USAGE	Access
General Domain					
Stanford Alpaca (Taori et al., 2023)	Text		SI SI	Instruction Tuning	Open
Dolly-v2 (Conover et al., 2023)	Text		elf-instruct →HG nan generation	Instruction Tuning	Open
Baize (Xu et al., 2023)	Text	653,699	→MIX	Instruction Tuning	Open
G FLAN (Wei et al., 2022)	Text		n and machine-gene>COL om other dataset	Instruction Tuning	Open
InstructGPT (Ouyang et al., 2022b)	Text	112,801	HG	RLHF, Instruction Tuning	Closed
ShareGPT (sha, 2023) COIG (Zhang et al., 2023a)	Text Text	260,137 67,798	MIX COL	Instruction Tuning, Chat Instruction Tuning	Closed Open
Ultrachat (Ding et al., 2023)	Text	1,468,352	MIX	Chat	Open
Galactica (Taylor et al., 2022)	Text, Biomolecule	783,599	MIX	Pre-training	Closed
Specific Domain					
PCdes (Zeng et al., 2022)	Text, Molecule	15,000	MIX	Pre-training	Closed
ChEBI-20 (Edwards et al., 2022)	Text, Molecule	33,010	COL	Pre-training	Open
PubChemSTM (Liu et al., 2023)	Text, Molecule	281,000	COL	Pre-training	Closed
MoMu (Su et al., 2022)	Text, Molecule	15,000	MIX	Pre-training	Open
Mol-Instructions (ours)	Text, Biomolecule	2,043,587	MIX	Instruction Tuning	Open

01 Introduction & Background


02 Data Construction & Analysis

03 Experiments


Empowering LLMs with Mol-Instructions to unlock Biomolecular Domain

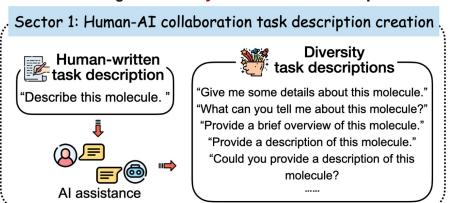


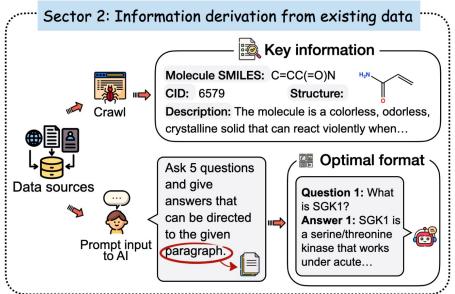
Leveraging the powerful of LLMs to understand or even design biomolecules?

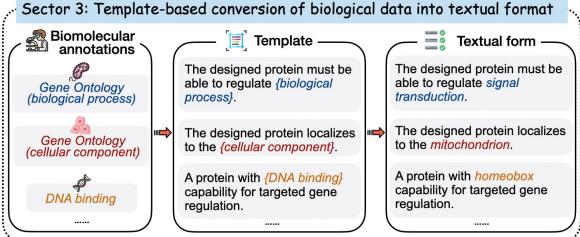
True or False **Chemical Entity** Question Recognition 1K. PubMed 1K. BC4CHEMD 1.9% 1.9% Chemical-disease Open Question Interaction Extraction 70.9% 38K, MedMCQA 0.5K, BC5CDR & PubMed-GPT Chemical-protein 23.1% Multi-choice Interaction Extraction Question 0.8K, ChemProt 12K. MedMCQA & MMLU

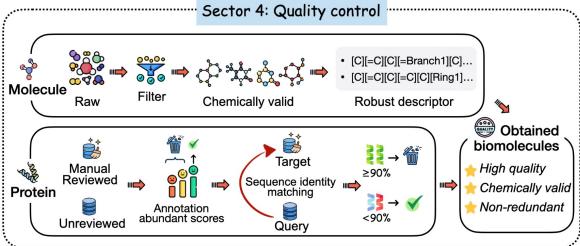
Mol-Instructions includes tasks in three major categories, totaling 2,043,587 instruction data entries.

(b) Protein-oriented Instructions


(c) Biomolecular Text Instructions

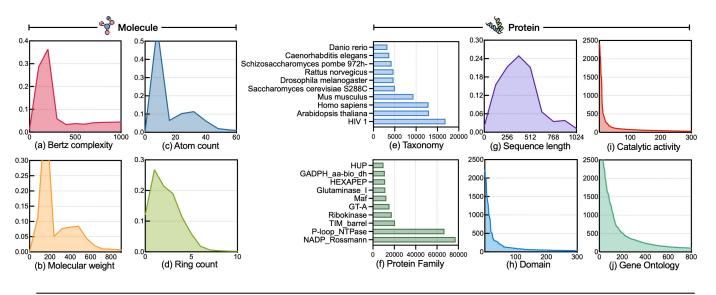

Data Constructions


Simulating the diversity of human needs and queries.



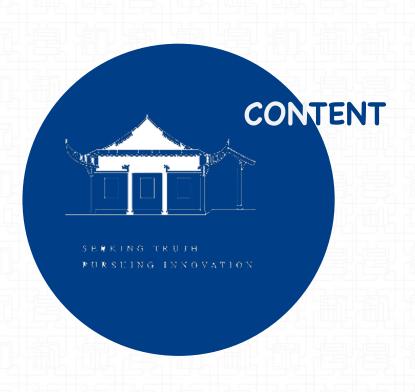
Transforming existing databases into instructions via preprocessing.

Converting structured annotations to text with templates.



Ensuring sequence quality for molecules and proteins.

Data Analysis



Diversity of sequences

	Features		Example			
	Chemical properties		It combines with metals to make fluorides such as sodium fluoride and calcium fluoride.			
P		Physical properties	The molecule is a colorless, flammable gas that has a distinct, pungent smell.			
Molecule		Applications	Used as a flavoring, solvent, and polymerization catalyst.			
1110100010	~	Environment	The molecule is a metal that occurs naturally throughout the environment, in rocks, soil, water, and air.			
	O	Safety	Lethal by inhalation and highly toxic or lethal by skin absorption.			
	1	Formation	It is formed in foods that are rich in carbohydrates when they are fried, grilled, or baked.			
		Function	The designed protein must be able to regulate signal transduction.			
AND SECOND		Subcellular location	The designed protein localizes to the mitochondrion.			
Protein	B	Structure	The target protein must exhibit Helix as its primary conformation.			
Trotom	A	Family & Domain	The designed protein should contain PWWP domain that is essential for its function.			
	((•))	PTM / Processing	Incorporate a signal peptide in the protein design.			

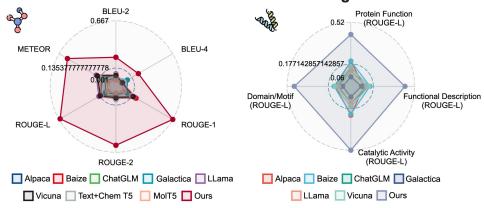
Coverage of descriptions

01 Introduction & Background

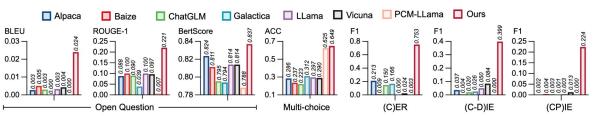
02 Data Construction & Analysis

03 Experiments

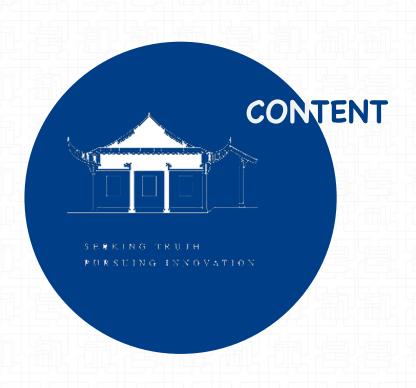
Results on Mol-Instructions


Molecular Generation

Moleculal deliciation							
Model	Exact↑	BLEU↑	Levenshtein↓	RDK FTS↑	MACCS FTS↑	Morgan FTS↑	Validity†
Description-guided	Description-guided Molecule Design						
ALPACA	0.000	0.004	51.088	0.006	0.029	0.000	0.002
BAIZE	0.000	0.006	53.796	0.000	0.000	0.000	0.002
CHATGLM	0.000	0.004	53.157	0.005	0.000	0.000	0.005
LLAMA	0.000	0.003	59.864	0.005	0.000	0.000	0.003
VICUNA	0.000	0.006	60.356	0.006	0.001	0.000	0.001
GALACTICA	0.000	0.192	44.152	0.135	0.248	0.088	0.992
Техт+Снем Т5	0.097	0.508	41.819	0.352	0.474	0.353	0.721
MOLT5	0.112	0.546	38.276	0.400	0.538	0.295	0.773
OURS	0.002	0.345	41.367	0.231	0.412	0.147	1.000
Reagent Prediction	ı						
ALPACA	0.000	0.026	29.037	0.029	0.016	0.001	0.186
BAIZE	0.000	0.051	30.628	0.022	0.018	0.004	0.099
CHATGLM	0.000	0.019	29.169	0.017	0.006	0.002	0.074
LLAMA	0.000	0.003	28.040	0.037	0.001	0.001	0.001
VICUNA	0.000	0.010	27.948	0.038	0.002	0.001	0.007
GALACTICA	0.000	0.141	30.760	0.036	0.127	0.051	0.995
Техт+Снем Т5	0.000	0.225	49.323	0.039	0.186	0.052	0.313
OURS	0.044	0.224	23.167	0.237	0.364	0.213	1.000
Forward Reaction	Prediction						
ALPACA	0.000	0.065	41.989	0.004	0.024	0.008	0.138
BAIZE	0.000	0.044	41.500	0.004	0.025	0.009	0.097
CHATGLM	0.000	0.183	40.008	0.050	0.100	0.044	0.108
LLAMA	0.000	0.020	42.002	0.001	0.002	0.001	0.039
VICUNA	0.000	0.057	41.690	0.007	0.016	0.006	0.059
GALACTICA	0.000	0.468	35.021	0.156	0.257	0.097	0.946
Техт+Снем Т5	0.239	0.782	20.413	0.705	0.789	0.652	0.762
OURS	0.045	0.654	27.262	0.313	0.509	0.262	1.000
Retrosynthesis							
ALPACA	0.000	0.063	46.915	0.005	0.023	0.007	0.160
BAIZE	0.000	0.095	44.714	0.025	0.050	0.023	0.112
CHATGLM	0.000	0.117	48.365	0.056	0.075	0.043	0.046
LLAMA	0.000	0.036	46.844	0.018	0.029	0.017	0.010
VICUNA	0.000	0.057	46.877	0.025	0.030	0.021	0.017
GALACTICA	0.000	0.452	34.940	0.167	0.274	0.134	0.986
Техт+Снем Т5	0.141	0.765	24.043	0.685	0.765	0.585	0.698
OURS	0.009	0.705	31.227	0.283	0.487	0.230	1.000


Property Prediction

MODEL	MAE↓			
Property Prediction				
ALPACA	322.109			
BAIZE	261.343			
CHATGLM	-			
LLAMA	5.553			
VICUNA	860.051			
GALACTICA	0.568			
OURS	↑0.555 0.013			


Molecule & Protein Understanding

Biotext Natural Language Processing

True or False

01 Introduction & Background

02 Data Construction & Analysis

03 Experiments

Take Away

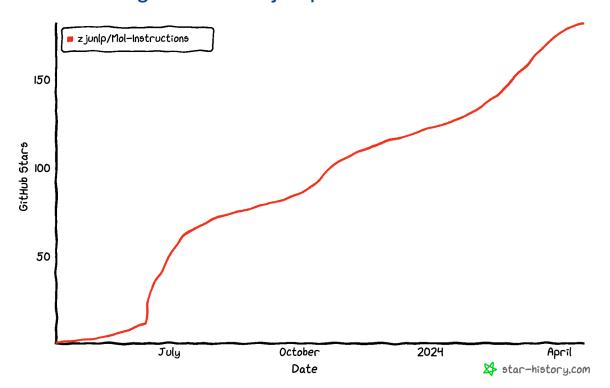
- ☐ accessing cross-modal comprehension in general models
- □ advancing research and innovation in biomolecular design by collecting and organizing a wide range of design standards
- □ aiding models in understanding biomolecular properties and reactions without explicit programming

Limitations

- ☐ Distinct representation spaces of text and biomolecules
- ☐ Limitations imposed by LoRA's training strategy

Future Work

- ☐ Expand the vocabulary with technical terms
- Model with multimodal techniques


Open Source

github.com/zjunlp/Mol-Instructions

zjunlp/Mol-Instructions

y Total downloads

11,177 (all time, tracked internally since January 2021)

Thank you!

Data

