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Background

❑DML: map data to embedding space where similar data are closer

❑Proxy-based losses: learn proxies to represent class

❑Pre-trained vision transformers (ViT) have strong representation ability

❑Full fine-tuning is computationally expensive, prone to overfitting and catastrophic 
forgetting

We propose a parameter-efficient fine-tuning (PEFT) framework applying the visual 
prompt tuning (VPT) to fine-tune vision transformers for DML.
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Visual Prompt Tuning (VPT)

❑Learnable prompts append to ViT embeddings

❑Only tune prompts + head, rest of ViT frozen

❑Highly parameter efficient

Benefits:

➢Efficient adaptation

➢Retains pre-trained knowledge

➢Strong performance in downstream tasks
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Proxy-based Deep Metric Learning (DML)

• Learn proxies to represent each class

• Compare samples to proxies instead of each other

• Proxies updated with samples in each batch

Challenges:

➢Proxies initialized randomly lack semantic info

➢Updating proxies with limited samples in each batch
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Our Framework

❑Generate semantic proxies 
using class-specific prompts

❑Integrate semantic info into 
proxies

❑Combine with original proxies 
as bias
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Generating Semantic Proxies

❑Generate proxy from ViT with class-
specific prompts

❑Allows proxies to carry semantic info

Benefits:

➢Proxies have semantic meaning

➢Speeds up convergence

➢Improves representation quality
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Integrating Semantic Proxies

❑Use GRU to sequentially integrate proxies

❑Allows capturing data structure over time

❑Filters out irrelevant noise
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Combining with Original Proxies

Original proxies as bias term

❑Handles unsampled classes

❑Balances update frequency vs delay

Final proxy is weighted combination

Updated within and across batches
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Comparison of PEFT Methods
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Compare to state-of-the-art
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Conclusion

❑Semantic proxies via class-specific prompt tuning

❑GRU integration of proxies over time

❑Combining the semantic proxies with original proxies to handle 
unsampled classes 

❑Comparable or State-of-the-art results with ~5% of parameters tuned

Prompt tuning is a powerful tool for adapting vision transformers to DML in 
a parameter-efficient manner
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Thanks for watching!

Please download and try our code at:
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