Enhancing Human-AI Collaboration Through Logic-Guided Reasoning Chengzhi Cao, Yinghao Fu, Sheng Xu, Ruimao Zhang, Shuang Li #### Introduction ## Theory of Mind The ability to understand others' mental states and act upon them ## Introduction Main agent: setup a table #### Introduction **Spatial-Temporal Predicate** In our paper, we extend the above static predicates to spatial-temporal predicates, which include spatial-temporal *property* predicates and spatial-temporal *relation* predicates. Specifically, the spatial-temporal *property* predicates are defined as $$X(v): \mathcal{C} \times \cdots \times \mathcal{C} \times \mathcal{T} \times \mathcal{S} \mapsto \{0,1\}.$$ We will consider spatial-temporal logic rules where the body part contain spatial-temporal predicates as relation constraints. For example, a sensible rule will look like $$f: Y_{\text{TurnAround}}(c, t, s) \leftarrow X_{\text{PickUpKey}}(c, t, s) \bigwedge R_{\text{InFront}}((c', t, s'), (c, t, s)) \bigwedge R_{\text{Behind}}((c'', t, s''), (c, t, s))$$ where $c \in C_{person}$, $c' \in C_{block}$, and $c'' \in C_{key}$. In general, the *spatial-temporal logic rule* in our paper is defined as a logical connectives of predicates, including property predicates and spatial-temporal relation predicates, $$f: Y(v) \leftarrow \bigwedge_{X_{\text{property}} \in \mathcal{X}_f} X_{\text{property}}(v') \bigwedge_{R_{\text{spatial-temporal}} \in \mathcal{R}_f} R_{\text{spatial-temporal}}(v'', v)$$ (1) where Y(v) is the *head predicate* evaluated at the entity-time-location triplet v, \mathcal{X}_f is the set of property predicates defined in rule f, and \mathcal{R}_f denotes the set of spatial-temporal relation predicates defined in rule f. Figure 1: Illustration of feature construction using a simple logic formula with temporal relation predicate $(t_1 < t_2), f : Y \leftarrow$ $A \wedge B \wedge C \wedge (A \text{ Before } B)$. The rule defines the template to gather combinations of the body predicate history events. Here predicate A has 2 events and predicate B has 1 event, the temporal relation constraint would lead to valid combinations (also called "paths"). This type of feature construction can be extended to spatial-temporal cases, where we count the valid paths as the feature. #### Framework ## Experiment #### Watch-and-Help Dataset #### Result Table 1: Comparative performance of various rule encoder backbones on the Watch-and-Help Dataset: An evaluation across four difficulty tiers using three metrics—Average Number of Moves (AN, lower is better) for successful episodes, Success Rate (SR, higher is better); and Speedup (SU, higher is better). Partially Observable Methods Level 1 Level 3 Level 4 Level 2 15.28 ± 0.06 22.24 ± 0.15 28.88 ± 0.15 51.20 ± 0.12 71.02 ± 0.08 60.13 ± 0.11 51.48 ± 0.04 WAH 78.61 ± 0.02 0.17 ± 0.012 0.14 ± 0.019 0.13 ± 0.016 0.08 ± 0.016 14.08 ± 0.04 20.40 ± 0.10 28.71 ± 0.05 42.12 ± 0.04 $AN \downarrow$ 71.32 ± 0.04 **GEM** SR ↑ 79.27 ± 0.02 60.99 ± 0.07 53.97 ± 0.06 SU↑ 0.24 ± 0.017 0.22 ± 0.016 0.19 ± 0.012 0.15 ± 0.015 13.47 ± 0.13 20.10 ± 0.14 28.68 ± 0.15 38.25 ± 0.01 $AN \downarrow$ DRRN SR ↑ 80.86 ± 0.09 71.74 ± 0.06 66.27 ± 0.13 57.53 ± 0.18 0.25 ± 0.015 0.19 ± 0.017 0.17 ± 0.004 0.16 ± 0.009 SU↑ AN↓ 12.76 ± 0.06 19.92 ± 0.06 28.32 ± 0.02 34.16 ± 0.04 Seq2Seq SR ↑ 81.12 ± 0.01 72.45 ± 0.18 66.69 ± 0.18 57.86 ± 0.09 0.26 ± 0.007 SU↑ 0.38 ± 0.003 0.28 ± 0.008 0.21 ± 0.014 AN 1 12.68 ± 0.03 18.72 ± 0.10 28.12 ± 0.12 32.92 ± 0.18 ReQueST SR ↑ 81.12 ± 0.05 77.44 ± 0.17 68.52 ± 0.04 55.34 ± 0.07 SU↑ 0.38 ± 0.019 0.30 ± 0.015 0.25 ± 0.009 0.22 ± 0.011 11.40 ± 0.04 16.21 ± 0.15 26.16 ± 0.02 31.10 ± 0.05 AN 82.43 ± 0.17 78.14 ± 0.03 69.84 ± 0.17 58.91 ± 0.16 Ours 0.48 ± 0.015 0.44 ± 0.009 0.36 ± 0.013 0.33 ± 0.017 Table 2: Experiment results on HandMeThat dataset. Each model is evaluated on 4 hardness levels with 3 metrics: the Average Score (AS, higher is better), the Success Rate (SR, higher is better), and the Average Number of Moves (AN, lower is better) in successful episodes. | Methods | | Partially Observable | | | | |---------|------|----------------------|------------------|------------------|------------------| | | | Level 1 | Level 2 | Level 3 | Level 4 | | Random | AS↑ | -40.0 | -40.0 | -40.0 | -40.0 | | | SR ↑ | 0.0 | 0.0 | 0.0 | 0.0 | | | AN↓ | N/A | N/A | N/A | N/A | | Seq2Seq | AS↑ | -5.1 ± 0.07 | -25.3 ± 0.09 | -34.5 ± 0.15 | -32.0 ± 0.20 | | | SR ↑ | 25.50 ± 0.20 | 10.40 ± 0.14 | 3.95 ± 0.23 | 5.30 ± 0.26 | | | AN↓ | 4.21 ± 0.01 | 4.17 ± 0.04 | 4.19 ± 0.02 | 4.12 ± 0.06 | | GEM | AS↑ | -6.3±0.11 | -22.5 ± 0.12 | -30.9 ± 0.14 | -29.6 ± 0.18 | | | SR ↑ | 24.64 ± 0.40 | 12.47 ± 0.21 | 5.74 ± 0.15 | 7.21 ± 0.13 | | | AN↓ | 4.34 ± 0.04 | 4.36 ± 0.02 | 4.24 ± 0.00 | 4.22 ± 0.00 | | DRRN | AS↑ | -40.0 | -40.0 | -40.0 | -40.0 | | | SR ↑ | 0.0 | 0.0 | 0.0 | 0.0 | | | AN↓ | N/A | N/A | N/A | N/A | | Ours | AS↑ | -1.4 ± 0.03 | -5.8 ± 0.06 | -9.1 ± 0.17 | -11.9 ± 0.23 | | | SR ↑ | 27.73 ± 0.29 | 24.81 ± 0.36 | 20.97 ± 0.12 | 21.66 ± 0.18 | | | AN↓ | 4.05 ± 0.01 | 4.09 ± 0.01 | 4.14 ± 0.03 | 4.21 ± 0.02 | #### Visualization Rule: Walk_to(Bob, plate) ∧ Grab(Bob, plate) ∧ Walk_to(Bob, microwave) ∧ Open(Bob, microwave) →Inside(plate,microwave) Explanation: - Bob walks towards the plate and grabs it - Bob walks towards the microwave - Alice infers his goal as "put the plate into the microwave" - Alice opens the microwave Bob walk towards the bedroom. Alice finds that Bob walks to the bedroom. Alice switches on TV. Rule: Walk_to(Bob, bedroom) ∧ Switch_on(Alice, TV) ∧ Walk_to (Bob, sofa) → Watch(Bob, TV) Explanation: - Explanation. - Bob walks towards the bedroom - Bob walks towards the sofa - Alice infers his goal as "watch TV" - Alice switches on TV Bob meets Alice. Bob walks by Alice's side. Alice meets Bob. Alice makes way for Bob. Rule: Walk_to(Bob, sofa) \land Block(Alice,Bob) \land Make_way (Alice,Bob) \rightarrow Pass_by(Bob,Alice) #### Explanation: - Bob walks towards the sofa - Alice blocks Bob's way by chance - Alice makes way for Bob so he can walk quickly - Bob walks by Alice's side Figure 4: Visualization and explanation of logic rules in Watch-and-help dataset. # Thanks for Listening!