Fast hyperboloid decision tree algorithms

Philippe Chlenski,¹ Ethan Turok,¹ Antonio Moretti,² Itsik Pe'er¹

¹Columbia University ²Barnard College

Motivation

Hyperbolic space: neighborhoods grows exponentially

Euclidean space cannot represent hierarchical data!

However, inference methods lag behind

Decision tree algorithms

Decision trees:

- Partition space recursively
- Split criteria: $x_d > \theta$?
- Decision areas are high-dimensional boxes
- Choose splits to maximize homogeneity

Random forests:

Ensemble of decision trees trained on subsets of data/features

Decision boundary wishlist

- 1. Topological continuity of decision areas
- 2. Convexity of decision areas
- 3. Equidistance to the points being separated
- 4. O(nd) candidates per split

Problem setup

Inputs:

- X: points in hyperbolic space
- ► y: class labels

Task:

Fit a decision tree to predict ${\boldsymbol y}$ from ${\boldsymbol X}$

Decision trees interpretation

Decision tree boundaries = hyperplanes

Are there other hyperplanes we want to consider?

Do any of them fulfill the wishlist?

Implementation and extensions

HYPERRF: ensemble of HYPERDT decision trees (random forest)

pip install hyperdt

Classification and regression on the hyperboloid model using SCIKIT-LEARN API

Source, experiments at https://github.com/pchlenski/hyperdt

Gaussian results

		D	ecision Trees	6	Random Forests		
D	n	HYPERDT	Euclidean	HORODT	HYPERRF	Euclidean	HORORF
2	100	89.10 [†]	87.90	84.60	90.70 ^{‡†}	87.50	86.30

Gaussian results

		Decision Trees			Random Forests		
D	n	HYPERDT	Euclidean	HORODT	HYPERRF	Euclidean	HORORF
2	100	89.10 [†]	87.90	84.60	90.70 ^{‡†}	87.50	86.30
	200	90.05 [†]	89.55	84.60	90.60	89.15	89.10
	400	90.97 ^{‡†}	89.53	85.55	91.32 ^{‡†}	89.00	88.88
	800	91.88 ^{‡†}	90.14	85.75	91.99 ^{‡†}	89.33	89.45
4	100	98.70 [†]	97.70	93.60	98.40	97.90	97.90
	200	98.75 ^{‡†}	98.10	95.80	98.85 ^{‡†}	97.90	98.05
	400	99.25 ^{‡†}	98.25	96.92	99.30 ^{‡†}	98.22	98.50
	800	99.30 ^{‡†}	98.36	97.27	99.36 ^{‡†}	98.21	98.76
8	100	99.70 [†]	99.60	97.70	99.70	99.50	99.10
	200	99.65 [†]	99.60	98.20	99.75	99.70	99.75
	400	99.90 [†]	99.88	99.10	99.88	99.93	99.88
	800	99.96 [†]	99.90	99.38	99.96	99.91	99.94
16	100	99.80 [†]	99.50	98.80	99.80	99.60	99.60
	200	99.95	100.00 [†]	99.50	99.90	99.95	99.80
	400	100.00 [†]	99.97	99.90	100.00	100.00	99.95
	800	100.00	99.99	99.90	100.00	99.99	99.92

Time complexity

Other results

Benchmarks on other datasets:

- Biological sequence embeddings
- Graph embeddings
- WordNet embeddings

Comparisons to other hyperbolic classifiers

Comparison to other models of hyperbolic space

Ablations

Conclusion

HYPERDT satisfies all decision boundary wishlist items

Sparse dot products maintain the asymptotic complexity of Euclidean decision trees

High accuracy in all inference settings

Easy to use

Extension to elliptical geometry and product space manifolds

Performance optimizations (e.g. pruning, caching)

Extension to more complex decision tree/random forest algorithm (e.g. boosted trees, branch-and-bound methods)

Hyperbolic data analysis with HYPERDT