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Training Large Scale Foundation Models is Expensive

• Multimodal models, e.g., CLIP, are trained at scale of several billion 
image-text pair data collected over 5-8 years

• Open CLIP ViT-G-14 model was trained for 240k A100 GPU hours which is 
approximately one month on 400 GPUs Schuhmann et al. (2022)
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Schuhmann et al. Laion-5b: An open large-scale dataset for training next generation image-text models (2022)



But data is continuously increasing and evolving

#webpages continuously increases Concepts evolve over time
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Training from scratch is not computationally feasible



How to continuously update these models as 
data distributions evolves over time?

4



How to continuously update these models as 
data distributions evolves over time?
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Do temporal data distribution shifts matter? Is 
there a need to continually to train a model? 



Performance of OpenAI models drop
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Standard Benchmarks do not capture differences
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What changes? Dynamic Evaluation Benchmarks

Retrieval Task Classification Task
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How to continuously update these models as 
data distributions evolves over time?
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Benchmarks for continual training of CLIP

• We create benchmarks by augmenting time information to existing 
datasets.
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Benchmarks for continual training of CLIP

• We create benchmarks by augmenting time information to existing 
datasets.

*We have data at finer granularity but for this study we only experiment at the granularity of year
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Experiment Protocol for Continual Learning

Oracle method uses t*C 
compute at every time step t

Baselines use C compute at 
every time step t
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Challenges in Continual Training

• Unclear how to schedule learning rates for subsequent runs
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Challenges in Continual Training

• Unclear how to schedule learning rates for subsequent runs
• Common wisdom: Start training from scratch instead of using 

previous models
• Rationale: Loss of plasticity Ash and Adams 2020
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Ash and Adams. On Warm-Starting Neural Network Training (NeurIPS 2020) 



How to schedule learning rate?
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Do we need the same maximum learning rate?

0
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Imagenet accuracy vs Max LR

0.00005 0.0001 0.00025 0.0005 0.001

If we decrease LR in 
subsequent iterations then 
zero shot IN accuracy drops

Increasing LR in 
subsequent iterations 

makes training unstable

LR in first iteration
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Do we need warmup in subsequent iterations?
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Removing warmup in 
subsequent iterations improve 

downstream performance

This gap often 
corresponds to 2-3x 

extra compute
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How to schedule learning rate?
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Summing up: Simple Baselines Show Promise

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Total Compute (MACs) £1020

20

25

30

35

40

45

50

Im
ag

en
et

an
d

it
s

di
st

.
sh

ift
s

ac
cu

ra
cy

2.7x

TiC-Datacomp (L)

Train from scratch with new +
old data (standard practice)

Warm start + new data
+ replay old data

19



Implications for data filtering
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Bestpool filtering (which 
using Imagenet for filtering) 

biases data filtering 
technique to prefer old data
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More Findings in the Paper
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• Diverse dataset sources: Tic-Redcaps, Tic-YFCC
• Different continual learning methods, e.g., EWC, LwF, etc. 



Takeaways
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Takeaway 1: Need to continually train CLIP models as performance 
drops on data from new time steps

Takeaway 2: First continual learning benchmark to train CLIP models at 
time evolving internet data; simple baselines show promise

lot of interesting questions to explore next … 
- impacts on generative VLMs like Llava? 
- better LR schedules to improve efficiency 
- downstream implications on Stable Diffusion models?



Questions?

Code & Data Paper

http://saurabhgarg1996.github.io/

sgarg2@andrew.cmu.edu

@saurabh_garg67



More Findings in the Paper
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• Diverse dataset sources: Tic-Redcaps, Tic-YFCC
• Different continual learning methods, e.g., EWC, LwF, etc. 



More Findings in the Paper
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Performance of Oracle on 
future time steps drops 

highlighting distribution shift 
in dataset. 


