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Training Large Scale Foundation Models is Expensive

* Multimodal models, e.g., CLIP, are trained at scale of several billion
image-text pair data collected over 5-8 years

* Open CLIP ViT-G-14 model was trained for 240k A100 GPU hours which is
approximately one month on 400 GPUS <., hmann et al. (2022)

Schuhmann et al. Laion-5b: An open large-scale dataset for training next generation image-text models (2022)



But data is continuously increasing and evolving
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Training from scratch is not computationally feasible
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How to continuously update these models as
data distributions evolves over time?
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Do temporal data distribution shifts matter? Is
there a need to continually to train a model?



Performance of OpenAl models drop

Our Proposed Evaluation Paradigm
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Standard Benchmarks do not capture differences

Standard Evaluation Paradigm
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What changes? Dynamic Evaluation Benchmarks
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How to continuously update these models as
data distributions evolves over time?



Benchmarks for continual training of CLIP

* We create benchmarks by augmenting time information to existing
datasets.
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Benchmarks for continual training of CLIP

* We create benchmarks by augmenting time information to existing
datasets.

TiC-Datacomp over time from years 2014 —2022*
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*We have data at finer granularity but for this study we only experiment at the granularity of year

11



Experiment Protocol for Continual Learning

A. Aggregate Data B. Continual Training

C. Static and Dynamic Evaluation
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Data at time t N — VTAB, Wilds, etc.

Standard Static Evaluation Tasks
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Challenges in Continual Training

* Unclear how to schedule learning rates for subsequent runs
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Challenges in Continual Training

* Unclear how to schedule learning rates for subsequent runs

« Common wisdom: Start training from scratch instead of using
previous models

» Rationale: Loss of plasticity sq 4ng Adams 2020
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Ash and Adams. On Warm-Starting Neural Network Training (NeurlPS 2020)
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How to schedule learning rate?
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Do we need the same maximum learning rate?

Imagenet accuracy vs Max LR If we decrease LR in
30 R in first iteration subsequent iterations then
________________ Y . zero shot IN accuracy drops
20
10 Increasing LR in
subsequent iterations
0 o makes training unstable
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Do we need warmup in subsequent iterations?

Removing warmup in
subsequent iterations improve
downstream performance
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How to schedule learning rate?
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Summing up: Simple Baselines Show Promise

TiC-Datacomp (L)
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Implications for data filtering

Fraction of data retained from Bestpool filtering (which
different timesteps using Imagenet for filtering)
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More Findings in the Paper

* Diverse dataset sources: Tic-Redcaps, Tic-YFCC
* Different continual learning methods, e.g., EWC, LwF, etc.

Benchmark Method

Sequential
Patching
Cumulative-Exp
EAC-DaConpIN Cumulative-Equal
Cumulative-All
EWC (Agwc = D*
LwF*
Cumulative-All*
Oracle™*
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Takeaways

Takeaway 1: Need to continually train CLIP models as performance
drops on data from new time steps

Takeaway 2: First continual learning benchmark to train CLIP models at
time evolving internet data; simple baselines show promise

lot of interesting questions to explore next ...
- impacts on generative VLMs like Llava?

- better LR schedules to improve efficiency
- downstream implications on Stable Diffusion models?



Questions?

Code & Data

y) @saurabh_garg67

¥4 sgarg2@andrew.cmu.edu
@ http://saurabhgarg1996.github.io/



More Findings in the Paper

* Diverse dataset sources: Tic-Redcaps, Tic-YFCC

* Different continual learning methods, e.g., EWC, LwF, etc.

Compute Static Tasks Dynamic Retrieval Tasks
Benchmark Method (MACs)  TmageNet ImageNet Flickr30k Average over Backward 1D Perfor- Forward
dist. shift 28 datasets Transfer mance Transfer

Sequential 3.0 x 1018 19.2 16.4 16.4 15.0 25.7 26.4 14.9

Patching 3.0 x 108 19.3 16.8 18.5 14.7 26.9 25.4 14.5

Cumulative-Exp 3.0 x 108 22.1 18.4 20.4 16.7 31.7 27.1 15.2

TiC-D M

C-DataComp™M) oo mmlafiveFmal 30 100® 991 18.4 19.2 17.1 31.8 2.8 15.1

Cumulative-All 3.0 x 10" 24.0 20.2 20.9 17.9 33.8 26.4 15.1

EWC \gwc =1* 3.6 x 108 18.7 16.3 162 5 5 25.5 26.4 14.8

LwF* 3 81055 19.2 16.5 7.7 14.3 25.6 26.6 14.9

Cumulative-All* 3.9 x 108 30.0 25.0 28.6 22.3 36.7 28.3 15.5

Oracle™* 25.5 21.2 235 19.0 34.9 27.8 15.6

1.2 x 1019
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More Findings in the Paper

Dynamic evaluation of Oracle
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