Horizon-free Regret for Linear Markov Decision Process

Zihan Zhang ${ }^{1}$, Jason D. Lee ${ }^{1}$, Yuxin Chen ${ }^{2}$, Simon S. Du ${ }^{3}$

Motivation

- Horizon-free regret bound for RL
- Positive answer for tabular MDP (Zhang et al., 2021, 2022);
- Beyond tabular MDP?
- Positive answer for linear MDP (this work).

Main Result

Theorem. For any linear MDP with totally bounded reward function, there exists an algorithm with regret bound $\tilde{O}\left(d^{5.5} \sqrt{K}+d^{6.5}\right)$ w.h.p..

- Horizon-free regret bound for linear MDP
- Without learning the transition model precisely;
- Sharing data efficiently among different horizon.

Problem Settings

- Markov Decision Process (MDP)
- State-action space $\mathcal{S} \times \mathscr{A}$
- Reward function $R:=\{R(s, a)\}$
- Transition model $P=:\{P(\cdot \mid s, a)\}$
- Goal: find a policy $\pi: \mathcal{S} \rightarrow \mathscr{A}$ to maximize $\mathbb{E}_{\pi}\left[\sum_{h=1}^{H} R\left(s_{h}, a_{h}\right)\right]$

Problem Settings

- Linear MDP
- State-action space $\mathcal{S} \times \mathscr{A}$ with feature $\{\phi(s, a)\}$
- Reward function $R:=\{R(s, a)\}$ such that $R(s, a)=\left\langle\phi(s, a), \theta_{r}\right\rangle$
- Transition model $P=:\{P(\cdot \mid s, a)\}$ such that $P\left(s^{\prime} \mid s, a\right)=\left\langle\phi(s, a), \mu\left(s^{\prime}\right)\right\rangle$
- Goal: find a policy $\pi: \mathcal{S} \rightarrow \mathscr{A}$ to maximize $\mathbb{E}_{\pi}\left[\sum_{h=1}^{H} R\left(s_{h}, a_{h}\right)\right]$

Algorithm

- Construct confidence region for the transition kernel $\left\{\mu\left(s^{\prime}\right)\right\}_{s^{\prime} \in \mathcal{S}}$
- Construct confidence interval for $\left\langle\phi, \mu^{\top} v\right\rangle$ with least square regression
- ϕ : possible feature vector
- v : possible choice of optimal value function (low intrinsic dimension)
- Construct confidence region for θ_{r} (see VOFUL in [Zhang et al., 2021b])
- Plan optimistically according to the confidence regions

Technical Ideas

- Hardness
- The sum of bonus due to inconsistent value functions $\left\{V_{h}^{*}\right\}_{h \in[H]}$;
- Inconsistent value function leads to inconsistent information matrix.
- Solution
- Dividing $[H]$ into different intervals $[H]=\cup_{i} \mathscr{H}_{i}$;
- Prove that $\left\{V_{h}^{*}\right\}_{h \in \mathscr{H}_{i}}$ is nearly consistent measured by total variance.

Conclusion

- Future direction
- Extend the results to RL with general function approximation
- Improve the dependence on d

Thanks

