Horizon-free Regret for Linear Markov Decision Process

Zihan Zhang¹, Jason D. Lee¹, Yuxin Chen², Simon S. Du³

¹ Princeton University

² University of Pennsylvania

³ University of Washington

Motivation

- Horizon-free regret bound for RL
 - Positive answer for tabular MDP (Zhang et al., 2021, 2022);
 - Beyond tabular MDP?
 - Positive answer for linear MDP (this work).

Main Result

Theorem. For any linear MDP with totally bounded reward function, there exists an algorithm with regret bound $\tilde{O}(d^{5.5}\sqrt{K}+d^{6.5})$ w.h.p..

- Horizon-free regret bound for linear MDP
 - Without learning the transition model precisely;
 - Sharing data efficiently among different horizon.

Problem Settings

- Markov Decision Process (MDP)
 - State-action space $\mathcal{S} \times \mathcal{A}$
 - Reward function $R := \{R(s, a)\}$
 - Transition model $P =: \{P(\cdot | s, a)\}$
 - Goal: find a policy $\pi:\mathcal{S}\to\mathcal{A}$ to maximize $\mathbb{E}_{\pi}\left[\sum_{h=1}^{H}R(s_h,a_h)\right]$

Problem Settings

- Linear MDP
 - State-action space $\mathcal{S} \times \mathcal{A}$ with feature $\{\phi(s,a)\}$
 - Reward function $R := \{R(s, a)\}$ such that $R(s, a) = \langle \phi(s, a), \theta_r \rangle$
 - Transition model $P =: \{P(\cdot | s, a)\}$ such that $P(s' | s, a) = \langle \phi(s, a), \mu(s') \rangle$
 - Goal: find a policy $\pi: \mathcal{S} \to \mathscr{A}$ to maximize $\mathbb{E}_{\pi} \left[\sum_{h=1}^{H} R(s_h, a_h) \right]$

Algorithm

- Construct confidence region for the transition kernel $\{\mu(s')\}_{s'\in\mathcal{S}}$
 - Construct confidence interval for $\left\langle \phi, \mu^{\top} v \right\rangle$ with least square regression
 - ϕ : possible feature vector
 - v: possible choice of optimal value function (low intrinsic dimension)
- Construct confidence region for θ_r (see VOFUL in [Zhang et al., 2021b])
- Plan optimistically according to the confidence regions

Technical Ideas

- Hardness
 - The sum of bonus due to inconsistent value functions $\{V_h^*\}_{h\in[H]}$;
 - Inconsistent value function leads to inconsistent information matrix.
- Solution
 - Dividing [H] into different intervals $[H] = \cup_i \mathcal{H}_i$;
 - Prove that $\{V_h^*\}_{h\in\mathcal{H}_i}$ is nearly consistent measured by total variance.

Conclusion

- Future direction
 - Extend the results to RL with general function approximation
 - ullet Improve the dependence on d

Thanks