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Table Understanding using LLMs

LLM

Question: What is the highest amount of points 
scored in a lost game by an opponent?

Fact: The highest amount of points scored by an 
opponent in a lost game is 38.

User: When was the match against hamilton tiger-
cats played?
Assistant: oct 2
User: Can you tell the final score of that match?

Generate a brief description pertaining to the 
table.
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The table depicts matches played between a team 
against its opponents, date of the matches and the 

results of those matches.
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• Transformer-based LLMs trained on natural language text often struggle to comprehend the structure and 
compositionality of tabular data.

• LLMs have been adapted for tables through joint learning and pre-training on table semantic parsing, and 
synthesizing table-based template-based questions.

• The presence of irrelevant tabular data acts as noise or distracting information, leading to suboptimal 
performance by SoTA methods while performing question-answering, especially in large tables.

LLMs suffer drop in performance with increase in Table size
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CABINET outperforms several SoTA methods while being 
orders of magnitude smaller in # parameters



CABINET is more robust against noisy information and table 
perturbations



CABINET is more performant while handling high volume of 
data in large tables



Clustering Relevance Score through URS and Sparsifying 
Relevance Scores is Helpful



Conclusion and Future Work

• CABINET effectively addresses the challenge of question-answering over tables by identifying 
and weighing relevant portions of tabular data, enhancing performance by mitigating noise.

• Outperforming existing methods on three challenging benchmarks, CABINET establishes new 
state-of-the-art results, surpassing table-specific models and larger scale GPT-3-based 
approaches.

• Empirical evidence demonstrates CABINET's robustness to noise and its ability to generalize 
well to larger tables, indicating its efficacy in overcoming structural biases and enhancing 
performance in table-based question-answering tasks.

• As future work, it can be explored if CABINET can be used to improve performance while 
dealing with multiple tables and additional information present in the form of passages.
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