

Department of Computer Science

省 港 城 巾 八 学 City University of Hong Kong

Neuron Activation Coverage: Rethinking Outof-distribution Detection and Generalization

<u>Yibing Liu</u> Chris Xing Tian Haoliang Li Lei Ma Shiqi Wang

The 12th International Conference on Learning Representations (ICLR 2024)

Out-of-distribution (OOD) Problems

Distribution shifts between OOD and InD often drastically challenge well-trained models.

Out-of-distribution (OOD) Problems

Existing studies tackling OOD mainly arise from two avenues:

(a) OOD Detection

(b) OOD Generalization

Neurons in OOD scenarios

In this work, we study OOD problems from a neuron perspective.

Neurons can exhibit distinct activation patterns when exposed to InD and OOD!

input data: x fNetwork: $F = f \circ g.$ gprediction: **p**

Method: Neuron Activation Coverage (NAC)

Idea: Rarely-activated (covered) neurons by a training set can potentially trigger undetected bugs during the test stage (Pei et al., 2017).

- NAC models *coverage area* in neuron activation space using InD training data.
- Upon receiving OOD data, neurons tend to behave outside the coverage area.

Method: Neuron Activation Coverage (NAC)

We derive NAC from the probability density function (PDF)

$$\Phi^i_X(\hat{z}_i;r) = rac{1}{r} ext{min}(\kappa^i_X(\hat{z}_i),r)$$
 Threshold

Applications of NAC

In this work, we apply NAC to two OOD problems.

Experiments: OOD Detection

• NAC-UE outperforms 21 post-hoc detection methods on CIFAR-10, CIAFR-100, and ImageNet benchmarks!

	MINIST		SVHN		Text	ures	Place	es365	Average		
Method	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	
	CIFAR-10 Benchmark										
OpenMax	23.33 ± 4.67	$90.50{\scriptstyle \pm 0.44}$	25.40 ± 1.47	$89.77{\scriptstyle\pm0.45}$	31.50 ± 4.05	$89.58{\scriptstyle \pm 0.60}$	38.52 ± 2.27	$88.63{\scriptstyle \pm 0.28}$	29.69 ± 1.21	$89.62{\scriptstyle \pm 0.19}$	
ODIN	23.83 ± 12.34	95.24 ± 1.96	68.61 ± 0.52	84.58 ± 0.77	67.70±11.06	$86.94{\scriptstyle\pm2.26}$	70.36 ± 6.96	85.07 ± 1.24	57.62±4.24	$87.96{\scriptstyle \pm 0.61}$	
MDS	$27.30{\scriptstyle \pm 3.55}$	$\overline{90.10}_{\pm 2.41}$	$25.96{\scriptstyle\pm2.52}$	$91.18{\scriptstyle \pm 0.47}$	27.94 ± 4.20	$92.69{\scriptstyle \pm 1.06}$	47.67 ± 4.54	$84.90{\scriptstyle\pm2.54}$	32.22 ± 3.40	$89.72{\scriptstyle\pm1.36}$	
MDSEns	1.30 ± 0.51	99.17 ± 0.41	$74.34{\scriptstyle\pm1.04}$	$66.56{\scriptstyle \pm 0.58}$	76.07 ± 0.17	$77.40{\scriptstyle \pm 0.28}$	94.16 ± 0.33	$52.47{\scriptstyle\pm0.15}$	$61.47{\scriptstyle\pm0.48}$	$73.90{\scriptstyle \pm 0.27}$	
RMDS	$21.49{\scriptstyle\pm2.32}$	$93.22{\scriptstyle \pm 0.80}$	$23.46{\scriptstyle\pm1.48}$	$91.84{\scriptstyle \pm 0.26}$	$25.25{\scriptstyle\pm 0.53}$	$92.23{\scriptstyle\pm0.23}$	31.20 ± 0.28	$\underline{91.51}_{\pm 0.11}$	$25.35{\scriptstyle\pm0.73}$	$92.20{\scriptstyle \pm 0.21}$	
Gram	$70.30{\scriptstyle \pm 8.96}$	72.64 ± 2.34	33.91 ± 17.35	$91.52{\scriptstyle\pm4.45}$	94.64 ± 2.71	$62.34{\scriptstyle\pm8.27}$	90.49 ± 1.93	$60.44_{\pm 3.41}$	72.34 ± 6.73	$71.73{\scriptstyle \pm 3.20}$	
ReAct	$33.77{\scriptstyle\pm18.00}$	92.81 ± 3.03	$50.23{\scriptstyle \pm 15.98}$	89.12 ± 3.19	51.42 ± 11.42	$89.38{\scriptstyle \pm 1.49}$	44.20 ± 3.35	$90.35{\scriptstyle \pm 0.78}$	44.90 ± 8.37	90.42 ± 1.41	
VIM	18.36 ± 1.42	$94.76{\scriptstyle \pm 0.38}$	19.29 ± 0.41	94.50 ± 0.48	21.14 ± 1.83	$\underline{95.15}_{\pm 0.34}$	41.43 ± 2.17	$89.49{\scriptstyle \pm 0.39}$	25.05 ± 0.52	$\underline{93.48}_{\pm 0.24}$	
KNN	20.05 ± 1.36	$94.26{\scriptstyle \pm 0.38}$	22.60±1.26	92.67 ± 0.30	24.06 ± 0.55	93.16 ± 0.24	30.38 ± 0.63	$91.77_{\pm 0.23}$	24.27 ± 0.40	92.96 ± 0.14	
ASH	$70.00{\scriptstyle\pm10.56}$	83.16 ± 4.66	83.64 ± 6.48	73.46 ± 6.41	84.59 ± 1.74	77.45 ± 2.39	77.89 ± 7.28	$79.89{\scriptstyle \pm 3.69}$	$79.03{\scriptstyle\pm4.22}$	$78.49{\scriptstyle\pm2.58}$	
SHE	$42.22{\scriptstyle\pm20.59}$	$90.43{\scriptstyle \pm 4.76}$	$62.74_{\pm 4.01}$	86.38 ± 1.32	84.60±5.30	$81.57{\scriptstyle\pm1.21}$	76.36 ± 5.32	82.89 ± 1.22	66.48±5.98	85.32 ± 1.43	
GEN	23.00 ± 7.75	$93.83{\scriptstyle\pm2.14}$	28.14 ± 2.59	$91.97{\scriptstyle\pm0.66}$	$40.74_{\pm 6.61}$	$90.14{\scriptstyle \pm 0.76}$	47.03 ± 3.22	$89.46{\scriptstyle \pm 0.65}$	$34.73{\scriptstyle\pm1.58}$	$91.35{\scriptstyle \pm 0.69}$	
NAC-UE	15.14 ± 2.60	94.86 ± 1.36	14.33 ± 1.24	$96.05{\scriptstyle \pm 0.47}$	$17.03{\scriptstyle \pm 0.59}$	$95.64{\scriptstyle \pm 0.44}$	$26.73{\scriptstyle \pm 0.80}$	$91.85{\scriptstyle \pm 0.28}$	18.31 ± 0.92	$94.60{\scriptstyle\pm0.50}$	
				CIFAI	R-100 Benchn	ark					
OpenMax	53.82 ± 4.74	76.01 ± 1.39	53.20±1.78	82.07 ± 1.53	56.12 ± 1.91	$80.56{\scriptstyle \pm 0.09}$	54.85 ± 1.42	$79.29{\scriptstyle \pm 0.40}$	$54.50{\scriptstyle \pm 0.68}$	$79.48{\scriptstyle \pm 0.41}$	
ODIN	45.94±3.29	83.79 ± 1.31	67.41±3.88	74.54 ± 0.76	62.37 ± 2.96	$79.33{\scriptstyle \pm 1.08}$	59.71±0.92	$\overline{79.45}_{\pm 0.26}$	58.86±0.79	$79.28{\scriptstyle \pm 0.21}$	
MDS	71.72 ± 2.94	$67.47{\scriptstyle\pm0.81}$	67.21 ± 6.09	$70.68{\scriptstyle \pm 6.40}$	$70.49{\scriptstyle\pm2.48}$	$76.26{\scriptstyle \pm 0.69}$	79.61 ± 0.34	$63.15{\scriptstyle \pm 0.49}$	72.26 ± 1.56	69.39 ± 1.39	
MDSEns	2.83 ± 0.86	98.21±0.78	$82.57{\scriptstyle\pm2.58}$	53.76 ± 1.63	$84.94{\scriptstyle\pm0.83}$	$69.75{\scriptstyle \pm 1.14}$	96.61 ± 0.17	42.27 ± 0.73	66.74 ± 1.04	$66.00{\scriptstyle \pm 0.69}$	
RMDS	$52.05{\scriptstyle\pm6.28}$	79.74 ± 2.49	51.65±3.68	84.89 ± 1.10	53.99 ± 1.06	$83.65{\scriptstyle\pm0.51}$	53.57±0.43	83.40 ± 0.46	52.81 ± 0.63	$82.92{\scriptstyle \pm 0.42}$	
Gram	53.53±7.45	$80.71_{\pm 4.15}$	20.06±1.96	95.55 ± 0.60	89.51 ± 2.54	$70.79{\scriptstyle\pm1.32}$	$94.67{\scriptstyle\pm0.60}$	46.38 ± 1.21	64.44±2.37	73.36±1.08	
ReAct	$56.04{\scriptstyle\pm 5.66}$	$78.37{\scriptstyle\pm1.59}$	$50.41{\scriptstyle\pm2.02}$	83.01 ± 0.97	55.04 ± 0.82	$80.15{\scriptstyle \pm 0.46}$	55.30 ± 0.41	$80.03{\scriptstyle \pm 0.11}$	$54.20{\scriptstyle\pm1.56}$	$80.39{\scriptstyle \pm 0.49}$	
VIM	48.32 ± 1.07	$81.89{\scriptstyle \pm 1.02}$	$46.22{\scriptstyle\pm5.46}$	83.14 ± 3.71	46.86±2.29	85.91 ± 0.78	61.57 ± 0.77	$75.85{\scriptstyle \pm 0.37}$	50.74 ± 1.00	$81.70{\scriptstyle \pm 0.62}$	
KNN	48.58 ± 4.67	$82.36{\scriptstyle\pm1.52}$	$51.75_{\pm 3.12}$	84.15 ± 1.09	53.56±2.32	83.66±0.83	60.70 ± 1.03	$79.43{\scriptstyle \pm 0.47}$	$53.65{\scriptstyle\pm0.28}$	82.40 ± 0.17	
ASH	66.58 ± 3.88	$77.23{\scriptstyle \pm 0.46}$	46.00±2.67	85.60±1.40	61.27 ± 2.74	$80.72{\scriptstyle \pm 0.70}$	$62.95{\scriptstyle\pm0.99}$	$78.76{\scriptstyle \pm 0.16}$	$59.20{\scriptstyle \pm 2.46}$	$80.58{\scriptstyle \pm 0.66}$	
SHE	$58.78{\scriptstyle\pm2.70}$	76.76 ± 1.07	$59.15_{\pm 7.61}$	80.97±3.98	$73.29_{\pm 3.22}$	$73.64{\scriptstyle\pm1.28}$	65.24 ± 0.98	$76.30{\scriptstyle \pm 0.51}$	64.12±2.70	$76.92{\scriptstyle\pm1.16}$	
GEN	$53.92{\scriptstyle\pm5.71}$	$78.29{\scriptstyle\pm2.05}$	$55.45{\scriptstyle\pm2.76}$	81.41 ± 1.50	$61.23{\scriptstyle \pm 1.40}$	$78.74{\scriptstyle \pm 0.81}$	$56.25{\scriptstyle\pm1.01}$	$\underline{80.28}{\scriptstyle \pm 0.27}$	56.71±1.59	$79.68{\scriptstyle \pm 0.75}$	
NAC-UE	$\underline{21.97}_{\pm 6.62}$	$93.15_{\pm 1.63}$	$\underline{24.39}{\scriptstyle \pm 4.66}$	$\underline{92.40}_{\pm 1.26}$	40.65 ± 1.94	$89.32{\scriptstyle \pm 0.55}$	$73.57{\scriptstyle\pm1.16}$	$73.05{\scriptstyle \pm 0.68}$	$40.14{\scriptstyle \pm 1.86}$	$\pmb{86.98}{\scriptstyle \pm 0.37}$	

Experiments: OOD Detection

• The performance of NAC-UE positively correlates with the number of employed layers.

Layer Combinations				CIFA	AR-10	CIFA	R-100	ImageNet		
Layer4	Layer3	Layer2	Layer1	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	
\checkmark				23.50	93.21	85.84	58.37	26.89	94.57	
\checkmark	\checkmark			21.32	94.35	44.92	85.25	23.51	95.05	
\checkmark	\checkmark	\checkmark		18.50	94.46	39.96	86.94	22.69	95.23	
\checkmark	\checkmark	\checkmark	\checkmark	18.31	94.60	40.14	86.98	22.49	95.29	

Experiments: OOD Detection

• The performance of NAC-UE positively correlates with the number of employed layers.

Layer Combinations				CIFA	AR-10	CIFA	R-100	ImageNet		
Layer4	Layer3	Layer2	Layer1	FPR95↓	AUROC↑	FPR95↓	AUROC↑	FPR95↓	AUROC↑	
\checkmark				23.50	93.21	85.84	58.37	26.89	94.57	
\checkmark	\checkmark			21.32	94.35	44.92	85.25	23.51	95.05	
\checkmark	\checkmark	\checkmark		18.50	94.46	39.96	86.94	22.69	95.23	
\checkmark	\checkmark	\checkmark	\checkmark	18.31	94.60	40.14	86.98	22.49	95.29	

• Ours neuron state $\mathbf{z} \odot \partial D_{\mathrm{KL}} / \partial \mathbf{z}$ is superior compared to other variants.

Experiments: OOD Generalization

• A positive correlation between NAC-ME and model generalization ability (i.e., OOD test performance) consistently holds.

Bakbone	Method	VL	VLCS		PACS		OfficeHome		TerraInc		Average	
Duiteone	Method	RC	ACC	RC	ACC	RC	ACC	RC	ACC	RC	ACC	
ResNet-18	Oracle	-	77.67	-	80.51	-	56.18	-	44.51	-	64.72	
	Validation	34.27	75.12	68.71	79.01	83.50	55.60	39.58	37.36	56.52	61.77	
	NAC-ME	50.29	75.83	74.16	78.85	84.91	55.76	40.42	39.45	62.45	62.47	
	Δ	(+16.02)	(+0.71)	(+5.45)	(-0.16)	(+1.41)	(+0.16)	(+0.84)	(+2.09)	(+5.93)	(+0.70)	
PacNat 50	Oracle	-	79.79	-	86.10	-	65.95	-	50.76	-	70.65	
	Validation	31.43	77.70	58.54	84.57	67.93	65.04	37.07	46.07	48.74	68.34	
Resiver-30	NAC-ME	28.68	76.41	62.07	85.28	69.16	65.23	40.16	47.10	50.02	68.51	
	Δ	(-2.75)	(-1.29)	(+3.53)	(+0.71)	(+1.23)	(+0.19)	(+3.09)	(+1.03)	(+1.28)	(+0.17)	
	Oracle	-	79.11	-	71.99		61.44	-	41.29	-	63.46	
Vi+ +16	Validation	37.95	77.43	89.34	69.83	98.71	61.22	22.71	36.28	62.18	61.19	
vii-110	NAC-ME	49.59	77.97	90.67	70.99	99.14	61.26	23.26	36.69	65.67	61.73	
	Δ	(+11.64)	(+0.54)	(+1.33)	(+1.16)	(+0.43)	(+0.04)	(+0.55)	(+0.41)	(+3.49)	(+0.54)	
Vit-b16	Oracle	-	80.96	-	90.23	-7-	81.23	-	52.23	-	76.16	
	Validation	18.81	78.70	41.38	87.80	58.29	80.11	0.92	45.49	29.85	73.03	
	NAC-ME	37.42	79.20	45.04	88.83	63.17	80.52	20.22	47.86	41.46	74.10	
	Δ	(+18.61)	(+0.50)	(+3.66)	(+1.03)	(+4.88)	(+0.41)	(+19.30)	(+2.37)	(+11.61)	(+1.07)	

Thank you!

Paper

