

Label-Agnostic Forgetting: A Supervision-Free Unlearning in Deep Models

Shaofei Shen¹, Chenhao Zhang¹, Yawen Zhao¹, Weitong Chen²,

Alina Bialkowski¹, and Miao Xu¹

The University of Queensland¹, University of Adelaide²

Machine Unlearning

□ Why we need machine unlearning?

Right-to-Be-Forgotten: the right to have personal data deleted from the model ¹

❑ What is required?

- ✓ A well-trained machine learning model $g_D = g_D^e \circ g_D^c$
- ✓ Specific data that is subject to removal requests forgetting data $D_f = (X_f, Y_f)$
- \checkmark Other data not affected by privacy requirements remaining data $D_r = (X_r, Y_r)$

□ What is expected results?

An equivalent model $g_U = g_U^e \circ g_U^c$ to the retrained model on remaining data

^{[1].} https://gdpr.eu/right-to-be-forgotten/.

Implementing the Machine Unlearning

We have authorized enterprise to use our data to train a classification model:

Classification Model

Data

Implementing the Machine Unlearning

If we do not want our data to be used for the model and cancel authorization:

A Question on Machine Unlearning

How can we realize unlearning without data labels?

Pet Images

□ Issues for unlearning without label information:

- Real-world datasets are not fully labelled
- Model is learned in weakly supervised learning scenarios
- Labels should be withheld for privacy reasons during unlearning

□ How to reduce the usage of labels in unlearning?

- Representation-level adjustment
- > Differentiate forgetting data's representation and preserve remaining data's representation

□ How to reduce the usage of labels in unlearning?

- Representation-level adjustment
- > Differentiate forgetting data's representation and preserve remaining data's representation

□ How to reduce the usage of labels in unlearning?

- Representation-level adjustment
- > Differentiate forgetting data's representation and preserve remaining data's representation

- Challenges on representation-level adjustment:
 - Hard to estimate the representation knowledge
 - Lack of objective for representationlevel unlearning
 - Representation adjustment will cause a misalignment with the classifier and fail in predictions

- Challenges on representation-level adjustment:
 - Hard to estimate the representation knowledge
 - Lack of objective for representationlevel unlearning
 - Representation adjustment will cause a misalignment with the classifier and fail in predictions

Challenges on representation-level adjustment:

- Hard to estimate the representation knowledge
- Lack of objective for representationlevel unlearning
- Representation adjustment will cause a misalignment with the classifier and fail in predictions

Estimating representation distribution

Estimating P_r and P_f through training two VAEs

Estimating representation distribution

Estimating representation distribution

Label-Agnostic Unlearning

- ✓ For remaining data: align the representation distribution with the the distribution in VAE h
- ✓ For forgetting data: push away the representation distribution with the the distribution in VAE h_f
- ✓ Extractor Unlearning Loss:

$$L_{UE} = \sum_{x \in X_r} \frac{\|g_U^e(x) - h(g_U^e(x))\|_2^2}{\|g_U^e(x) - h(g_U^e(x))\|_2^2 + 1} - \sum_{x \in X_f} \frac{\|g_U^e(x) - h_f(g_U^e(x))\|_2^2}{\|g_U^e(x) - h_f(g_U^e(x))\|_2^2 + 1}$$

Representation Alignment

- ✓ For remaining data: minimize the representations
 from the updated and original extractor
- For forgetting data: maximize the representations from the updated and original extractor
- ✓ Representation Alignment Loss:

$$L_{RA} = \sum_{x \in X_r} \log(\frac{\exp(simloss(g_U^e(x), g_D^e(x)))}{\sum_{\hat{x} \in X_f} \exp(simloss(g_U^e(\hat{x}), g_D^e(\hat{x}))/\tau)})$$

Label-Agnostic Unlearning

Performance Comparison: Data Removal

	Method	Data	$\mathbf{R_{tr}}$	$\mathbf{F_{tr}}$	$\mathbf{T_s}$	ASR	Data	$\mathbf{R_{tr}}$	$\mathbf{F_{tr}}$	$\mathbf{T}_{\mathbf{s}}$	ASR
Require labels	Retrain		99.56 ± 0.05	98.84 ± 0.10	99.04 ± 0.10	49.80 ± 0.53		96.43 ± 0.35	92.15 ± 0.41	90.23 ± 0.22	47.32 ± 0.76
	NegGrad	Digit	99.18 ± 0.28	98.86 ± 0.41	98.62 ± 0.29	50.24 ± 0.27	Fashion	93.28 ± 0.29	88.93 ± 0.79	89.18 ± 0.24	46.11 ± 0.66
Label agnostic	Boundary		97.65 ± 1.02	$95.36 {\pm} 2.50$	96.63 ± 1.35	$46.83 {\pm} 2.09$		56.28 ± 4.69	46.58 ± 4.04	53.00 ± 3.66	48.03 ± 1.41
	SISA		99.06 ± 0.12	98.60 ± 0.07	98.92 ± 0.02	$33.78 {\pm} 0.01$		91.98 ± 0.19	90.76 ± 0.07	89.92 ± 0.24	33.33 ± 0.02
	Unroll		99.63 ± 0.15	99.34 ± 0.33	99.08 ± 0.18	46.50 ± 0.60		89.83 ± 0.30	83.88 ± 0.65	81.21 ± 0.34	47.69 ± 0.50
	T-S		94.01 ± 0.77	93.09 ± 2.73	93.72 ± 1.03	47.82 ± 0.64		82.96 ± 1.14	86.77 ± 2.13	82.46 ± 1.24	45.90 ± 1.30
	SCRUB		99.28 ± 0.04	99.03 ± 0.12	98.95 ± 0.08	46.68 ± 0.80		90.88 ± 0.09	88.62 ± 0.28	88.75 ± 0.11	45.23 ± 0.94
	LAF+R		99.47 ± 0.14	$99.35 {\pm} 0.65$	98.89 ± 0.10	$49.42{\scriptstyle\pm}0.51$		94.18 ± 0.30	95.00 ± 1.62	90.51 ± 0.28	$47.39{\scriptstyle\pm}0.23$
	LAF		98.03 ± 0.68	97.29 ± 1.43	97.30 ± 0.78	47.92 ± 0.84		91.54 ± 2.67	90.91 ± 7.00	87.53 ± 3.26	46.89 ± 0.88
	Retrain	C10	84.03 ± 0.20	78.05 ± 1.34	87.20 ± 0.65	57.48 ± 0.88		83.88 ± 0.23	75.16 ± 0.76	93.41 ± 0.40	58.76 ± 0.48
	NegGrad		79.08 ± 0.55	70.50 ± 2.94	83.51 ± 0.97	56.53 ± 0.34	NHNS	81.57 ± 0.34	69.93 ± 1.66	91.54 ± 1.01	57.94 ± 0.80
	Boundary		54.73 ± 1.32	18.73 ± 3.33	51.23 ± 2.55	$62.79 {\pm} 0.95$		64.85 ± 2.06	28.62 ± 1.89	73.07 ± 1.96	89.17 ± 3.29
	SISA		66.78 ± 0.10	53.12 ± 0.74	54.30 ± 0.05	$37.53 {\pm} 0.02$		82.48 ± 0.17	67.79 ± 0.34	$82.57 {\pm} 0.83$	50.19 ± 0.38
	Unroll		57.82 ± 1.66	30.91 ± 2.86	61.31 ± 1.51	56.97 ± 1.27		70.98 ± 1.87	47.68 ± 2.72	83.27 ± 0.48	55.39 ± 0.98
	T-S		70.31 ± 2.32	72.17 ± 3.91	77.71 ± 2.02	54.64 ± 1.58		78.36 ± 0.13	73.50 ± 0.62	90.60 ± 0.61	55.77 ± 1.42
	SCRUB		29.16 ± 1.07	0.47 ± 0.93	25.18 ± 0.78	54.03 ± 0.64		22.32 ± 0.04	0±0	$19.59 {\pm} 0.07$	65.26 ± 1.24
	LAF+R		79.57 ± 0.72	$79.50{\scriptstyle\pm}0.66$	84.74 ± 1.08	57.74 ± 0.62		$83.37 {\pm} 0.41$	76.08 ± 0.76	93.56 ± 0.51	$58.03{\scriptstyle\pm}0.28$
	LAF		78.03 ± 1.55	73.30 ± 3.96	82.22 ± 2.57	57.65 ± 0.70		81.63 ± 0.49	76.11 ± 1.49	92.32 ± 0.58	57.85 ± 0.89

- LAF consistently ranks within the top 5 performances in all evaluations
- LAF+R achieves either the best or second-best results in nearly all evaluations

Summary

LAF is designed to address the research gap in label-agnostic unlearning

- □ LAF can accomplish mainstream unlearning tasks and retaining high predictive performance postlearning, all without the need for supervision information.
- □ LAF with supervised repairing (LAF+R) can achieve the leading performance in comparison to baseline methodologies.
- □ The experiments shed light on certain limitations of LAF, including the insufficient removal of the forgetting class in the class removal tasks, and the low efficiency

Thanks!

[Label-Agnostic Forgetting: A Supervision-Free Unlearning in Deep Models] | [04/04/2024]