Meta-Evolve: Continuous Robot Evolution for One-to-many Policy Transfer

Xingyu Liu, Deepak Pathak, Ding Zhao

Carnegie Mellon University

Carnegie Mellon University

Robotics Industry Created Many Successful Robots

How to train control policies on multiple different robots?

Train Control Policies on Multiple Different Robots

Train Control Policies on Multiple Different Robots

Proposed Solution: Policy Transfer

Train Control Policies on Multiple Different Robots

One-to-Many Robot-to-robot Policy Transfer: How to?

Source Robot

One-to-One Robot-to-robot Policy Transfer: How to?

Source Robot

Target Robot

One-to-One Robot-to-robot Policy Transfer: Imitation Learning?

Different MDP dynamics, cannot directly transfer

One-to-One Robot-to-robot Policy Transfer: Continuous Robot Evolution

Interpolate robot morphology and transfer policy

Liu et al., "REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer", ICML 2022 (Long Oral) Liu et al., "HERD: Continuous Human-to-Robot Evolution for Learning from Human Demonstration", CoRL 2022

One-to-Many Robot-to-robot Policy Transfer

Source Robot

One-to-Many Policy Transfer via Continuous Evolution: Vanilla Solution

One-to-Many Policy Transfer via Continuous Evolution: Vanilla Solution

Can we do better than that?

Evolution History: Creatures with Similar Morphology Share Same Ancestors

Robot evolution paths may also be shared!

Xia et al., "The genetic basis of tail-loss evolution in humans and apes", Nature, 2024

One-to-Many Policy Transfer via Continuous Evolution: Evolution Tree

Source Robot

One-to-Many Policy Transfer via Continuous Evolution: Evolution Tree

Target Robot N

One-to-Many Policy Transfer via Continuous Evolution: **Evolution Tree**

Evolution Tree Implementation Step 1: Kinematic Structure Matching

Evolution Tree Implementation Step 2: Physical Parameter Interpolation

How to Compute Evolution Tree?

Assumption: policy transfer training cost <u>locally proportional</u> to distribution difference of the MDP transition dynamics, and <u>locally proportional</u> to the robot hardware difference measured in vector L_p distance

Evolution Tree Implementation

Heuristics: aim to minimize the total L_p distance in robot evolution parameter space **Mathematically**: undirected graph that interconnects a set of points and minimizes total L_p travel distance is the *p*-Steiner tree

Realistic Implementation on Real Commercial Robots

Source Robot

Target Robot 1

Target Robot 3

Liu et al., "Meta-Evolve: Continuous Robot Evolution for One-to-many Policy Transfer", ICLR 2024

Realistic Implementation on **Real** Commercial Robots

rget Robot 2

rget Robot 3

Target Robot

is Robot Evolution for One-to-many Policy Tr

Quantitative Experiment Results

Quantitative Experiment Results

https://sites.google.com/view/meta-evolve