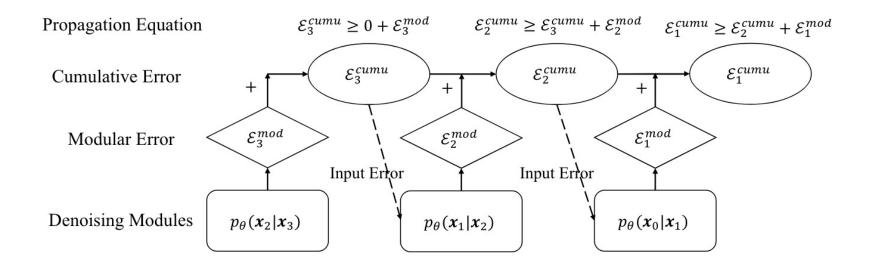
On Error Propagation of Diffusion Models

Yangming Li, Mihaela van der Schaar


Department of Applied Mathematics and Theoretical Physics University of Cambridge

Outline

- Structural Risk of Diffusion Models
- Cumulative Error Estimation
- Method: Regularization with Cumulative Errors
- Experiments on Image Generation

Structural Risk – Part1

- Chain structure might lead to error propagation
 - Why this is not for sure? $\mathcal{E}_t^{\text{cumu}} \mathcal{E}_t^{\text{mod}} = \mu_t \mathcal{E}_{t+1}^{\text{cumu}}$,

Structural Risk – Part2

• A more solid explanation

Definition of modular errors $\mathcal{E}_t^{\text{mod}} = \mathbb{E}_{\mathbf{x}_t \sim p_\theta(\mathbf{x}_t)} [D_{\text{KL}}(p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t) \mid\mid q(\mathbf{x}_{t-1} \mid \mathbf{x}_t))].$

 $\mathcal{E}_t^{\mathrm{cu}}$ Definition of cumulative errors

^{umu} =
$$D_{\mathrm{KL}}(p_{\theta}(\mathbf{x}_{t-1}) \mid\mid q(\mathbf{x}_{t-1})).$$

Our theorem: propagation equation $\mathcal{E}_t^{\text{cumu}} \ge \mathcal{E}_{t+1}^{\text{cumu}} + \mathcal{E}_t^{\text{mod}}$,

Empirical Evaluation

• Alternative measure with MMD $\frac{1}{4}\mathcal{D}_t^{\text{cumu}} \leq \mathcal{E}_t^{\text{cumu}} \leq \mathcal{D}_t^{\text{cumu}}$.

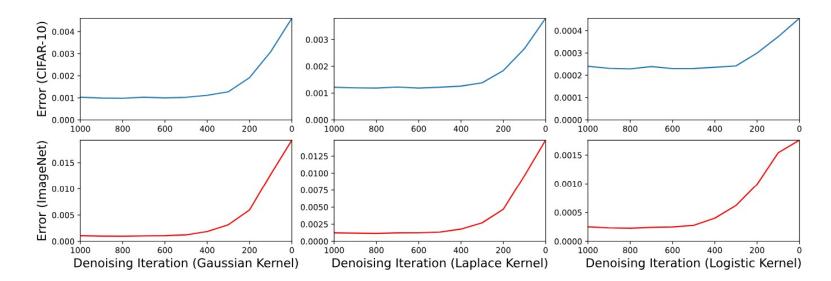


Figure 2: Uptrend dynamics of the MMD error $\mathcal{D}_t^{\text{cumu}}$ w.r.t. decreasing iteration t. The cumulative error $\mathcal{E}_t^{\text{cumu}}$ might show similar behaviors since it is tightly bounded by the MMD error.

Method

• Imposing a regularization $\mathcal{L}_t^{\text{reg}} = \mathcal{D}_t^{\text{cumu}}, \quad \mathcal{L}^{\text{reg}} = \sum_{t=0}^{T-1} w_t \mathcal{L}_t^{\text{reg}},$

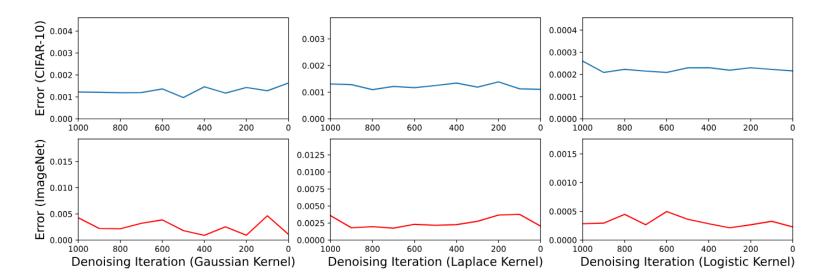
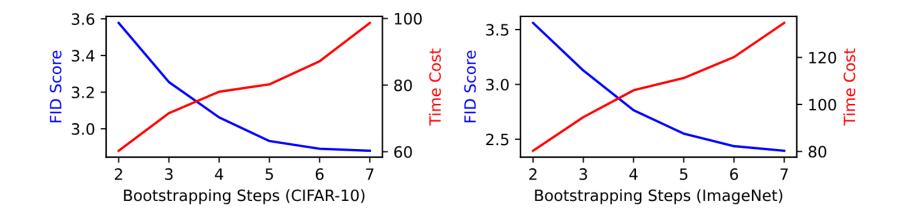



Figure 3: Re-estimated dynamics of the MMD error $\mathcal{D}_t^{\text{cumu}}$ with respect to decreasing iteration t after applying our proposed regularization. These dynamics should be compared with those in Fig. 2, showing that we have well handled error propagation.

Experiments

Approach	CIFAR-10	ImageNet	CelebA
ADM-IP Ning et al. (2023)	3.25	2.72	1.31
DDPM Ho et al. (2020)	3.61	3.62	1.73
DDPM w/ Consistent DM (Daras et al., 2023)	3.31	3.16	1.38
DDPM w/ FP-Diffusion (Lai et al., 2022)	3.47	3.28	1.56
DDPM w/ Our Proposed Regularization	$2.9\overline{3}^{}$	$-ar{2}.ar{5}5$	$ar{1}.ar{2}ar{2}$

Table 1: FID scores of our model and baselines on different image datasets. The improvements of our approach over baselines are statistically significant with p < 0.01 under t-test.

