Weaker MVI Condition Extragradient Methods with Multi-Step Exploration

Yifeng Fan Yongqiang Li Bo Chen

Zhejiang University of Technology

ICLR 2024

Yifeng Fan, Yongqiang Li, Bo Chen Weaker MVI Condition

Min-max optimization

Problem setting

 $\min_{\boldsymbol{x}} \max_{\boldsymbol{y}} f(\boldsymbol{x}, \boldsymbol{y})$

Min-max optimization

Problem setting

$$\min_{\boldsymbol{x}} \max_{\boldsymbol{y}} f(\boldsymbol{x}, \boldsymbol{y})$$

• Saddle gradient operator

$$Fz = \begin{bmatrix} \nabla_x f(x, y) \\ -\nabla_y f(x, y) \end{bmatrix}$$
, where $z = \begin{bmatrix} x \\ y \end{bmatrix}$

$$\min_{\boldsymbol{x}} \max_{\boldsymbol{y}} f(\boldsymbol{x}, \boldsymbol{y})$$

• Saddle gradient operator

$$F \boldsymbol{z} = \begin{bmatrix} \nabla_{\boldsymbol{x}} f(\boldsymbol{x}, \boldsymbol{y}) \\ -\nabla_{\boldsymbol{y}} f(\boldsymbol{x}, \boldsymbol{y}) \end{bmatrix}$$
, where $\boldsymbol{z} = \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{bmatrix}$

• Scenaries: GANs training, adversarial training, robust learning

$$\min_{\boldsymbol{x}} \max_{\boldsymbol{y}} f(\boldsymbol{x}, \boldsymbol{y})$$

• Saddle gradient operator

$$F m{z} = egin{bmatrix}
abla_{m{x}} f(m{x},m{y}) \\
-
abla_{m{y}} f(m{x},m{y}) \end{bmatrix}$$
, where $m{z} = egin{bmatrix} m{x} \\ m{y} \end{bmatrix}$

• Scenaries: GANs training, adversarial training, robust learning

• F may not be monotone

$$\min_{\boldsymbol{x}} \max_{\boldsymbol{y}} f(\boldsymbol{x}, \boldsymbol{y})$$

Saddle gradient operator

$${f F}m{z} = egin{bmatrix}
abla_{m{x}} f(m{x},m{y}) \
onumber -
abla_{m{y}} f(m{x},m{y}) \end{bmatrix}$$
, where $m{z} = egin{bmatrix} m{x} \ m{y} \end{bmatrix}$

- Scenaries: GANs training, adversarial training, robust learning
- F may not be monotone
- Assumptions on F

$$\min_{\boldsymbol{x}} \max_{\boldsymbol{y}} f(\boldsymbol{x}, \boldsymbol{y})$$

Saddle gradient operator

$$\mathsf{F} oldsymbol{z} = egin{bmatrix}
abla_{oldsymbol{x}} f(oldsymbol{x},oldsymbol{y}) \
-
abla_{oldsymbol{y}} f(oldsymbol{x},oldsymbol{y}) \end{bmatrix}$$
, where $oldsymbol{z} = egin{bmatrix} oldsymbol{x} \ oldsymbol{y} \end{bmatrix}$

- Scenaries: GANs training, adversarial training, robust learning
- F may not be monotone
- Assumptions on F

• *L*-Lipschitz
$$||F\boldsymbol{u} - F\boldsymbol{v}|| \le L||\boldsymbol{u} - \boldsymbol{v}||$$

$$\min_{\boldsymbol{x}} \max_{\boldsymbol{y}} f(\boldsymbol{x}, \boldsymbol{y})$$

Saddle gradient operator

$$\mathsf{F} oldsymbol{z} = egin{bmatrix}
abla_{oldsymbol{x}} f(oldsymbol{x},oldsymbol{y}) \
onumber -
abla_{oldsymbol{y}} f(oldsymbol{x},oldsymbol{y}) \end{bmatrix}$$
, where $oldsymbol{z} = egin{bmatrix} oldsymbol{x} \ oldsymbol{y} \end{bmatrix}$

• Scenaries: GANs training, adversarial training, robust learning

- F may not be monotone
- Assumptions on F
 - *L*-Lipschitz $||F\boldsymbol{u} F\boldsymbol{v}|| \le L||\boldsymbol{u} \boldsymbol{v}||$ • weak MVI condition $\langle F\boldsymbol{z}, \boldsymbol{z} - \boldsymbol{z}^* \rangle \ge \rho ||F\boldsymbol{z}||^2$

$$\min_{\boldsymbol{x}} \max_{\boldsymbol{y}} f(\boldsymbol{x}, \boldsymbol{y})$$

Saddle gradient operator

$$\mathsf{F} oldsymbol{z} = egin{bmatrix}
abla_{oldsymbol{x}} f(oldsymbol{x},oldsymbol{y}) \
onumber -
abla_{oldsymbol{y}} f(oldsymbol{x},oldsymbol{y}) \end{bmatrix}$$
, where $oldsymbol{z} = egin{bmatrix} oldsymbol{x} \ oldsymbol{y} \end{bmatrix}$

Scenaries: GANs training, adversarial training, robust learning

- F may not be monotone
- Assumptions on F
 - $\|F\mathbf{u} F\mathbf{v}\| \leq L \|\mathbf{u} \mathbf{v}\|$ $|F\mathbf{u} F\mathbf{v}\| \leq c \|\mathbf{u} \mathbf{v}\|$ $|F\mathbf{u} \mathbf{v}| \leq c \|\mathbf{u} \mathbf{v}\|$ • *L*-Lipschitz
 - weak MVI condition

on
$$\langle F \boldsymbol{z}, \boldsymbol{z} - \boldsymbol{z}^* \rangle \geq \rho \| F$$

• If $\rho = 0$, MVI (star-monotonicity)

$$\min_{\boldsymbol{x}} \max_{\boldsymbol{y}} f(\boldsymbol{x}, \boldsymbol{y})$$

Saddle gradient operator

$$\mathsf{F} oldsymbol{z} = egin{bmatrix}
abla_{oldsymbol{x}} f(oldsymbol{x},oldsymbol{y}) \
onumber -
abla_{oldsymbol{y}} f(oldsymbol{x},oldsymbol{y}) \end{bmatrix}$$
, where $oldsymbol{z} = egin{bmatrix} oldsymbol{x} \ oldsymbol{y} \end{bmatrix}$

• Scenaries: GANs training, adversarial training, robust learning

- F may not be monotone
- Assumptions on F
 - L-Lipschitz $\|F\boldsymbol{u} F\boldsymbol{v}\| \leq L \|\boldsymbol{u} \boldsymbol{v}\|$
 - weak MVI condition $\langle Fz, z-z \rangle$

$$\langle Fz, z - z^* \rangle \ge \rho \|Fz\|^2$$

- If $\rho = 0$, MVI (star-monotonicity)
- Weak MVI allows $\rho < 0$

Weak MVI Condition

Weak MVI Condition (star-cohypomonotonicity)

$$\langle F\mathbf{z}, \mathbf{z} - \mathbf{z}^* \rangle \ge \rho \|F\mathbf{z}\|^2$$

Weak MVI Condition

Weak MVI Condition (star-cohypomonotonicity)

$$\langle F\mathbf{z}, \mathbf{z} - \mathbf{z}^* \rangle \ge \rho \|F\mathbf{z}\|^2$$

• Minty variational inequality $\langle Fz, z - z^* \rangle \ge 0$

Weak MVI Condition

Weak MVI Condition (star-cohypomonotonicity)

$$\langle F\mathbf{z}, \mathbf{z} - \mathbf{z}^* \rangle \ge \rho \|F\mathbf{z}\|^2$$

- Minty variational inequality $\langle Fz, z z^* \rangle \ge 0$
- monotone

$$\langle F\boldsymbol{z} - F\boldsymbol{v}, \boldsymbol{z} - \boldsymbol{v} \rangle \geq 0$$

Weak MVI Condition (star-cohypomonotonicity)

$$\langle F\mathbf{z}, \mathbf{z} - \mathbf{z}^* \rangle \ge \rho \|F\mathbf{z}\|^2$$

- Minty variational inequality $\langle F \boldsymbol{z}, \boldsymbol{z} \boldsymbol{z}^* \rangle \ge 0$
- monotone $\langle F\boldsymbol{z} - F\boldsymbol{v}, \boldsymbol{z} - \boldsymbol{v} \rangle \geq 0$
- ρ -comonotone $\langle F \mathbf{z} - F \mathbf{v}, \mathbf{z} - \mathbf{v} \rangle \geq \rho \|F \mathbf{z} - F \mathbf{v}\|^2$

Weak MVI Condition (star-cohypomonotonicity)

$$\langle F\mathbf{z}, \mathbf{z} - \mathbf{z}^* \rangle \ge \rho \|F\mathbf{z}\|^2$$

- Minty variational inequality $\langle F \boldsymbol{z}, \boldsymbol{z} \boldsymbol{z}^* \rangle \ge 0$
- monotone $\langle F \boldsymbol{z} F \boldsymbol{v}, \boldsymbol{z} \boldsymbol{v} \rangle \geq 0$
- ρ -comonotone $\langle F \boldsymbol{z} - F \boldsymbol{v}, \boldsymbol{z} - \boldsymbol{v} \rangle \geq \rho \|F \boldsymbol{z} - F \boldsymbol{v}\|^2$

• star:
$$\mathbf{v} = \mathbf{z}^*$$
, hypo: $\rho < 0$

• Weak MVI: negative gradient might point away from zero

weak MVI with different parameters

Existing Works

• Extragradient (MVI)

• same stepsizes

$$\bar{\mathbf{z}}^{k} = \mathbf{z}^{k} - \alpha_{k} F \mathbf{z}^{k}$$
$$\mathbf{z}^{k+1} = \mathbf{z}^{k} - \alpha_{k} F \bar{\mathbf{z}}^{k}$$

• Extragradient (MVI)

• same stepsizes

$$\bar{\boldsymbol{z}}^{k} = \boldsymbol{z}^{k} - \alpha_{k} \boldsymbol{F} \boldsymbol{z}^{k}$$
$$\boldsymbol{z}^{k+1} = \boldsymbol{z}^{k} - \alpha_{k} \boldsymbol{F} \bar{\boldsymbol{z}}^{k}$$

• EG+/AdaptiveEG+ (weak MVI, $\rho > -1/2L$)

• larger extrapolation stepsize γ_k

$$\bar{z}^{k} = z^{k} - \gamma_{k}Fz^{k}$$
$$z^{k+1} = z^{k} - \alpha_{k}F\bar{z}^{k}$$

• First known first-order algorithm that converges for weak MVI problems with $\rho < -1/2L$. We provide convergence guarantee for $\rho > -0.632/L$. • First known first-order algorithm that converges for weak MVI problems with $\rho < -1/2L$. We provide convergence guarantee for $\rho > -0.632/L$.

• Adaptive method effectively resolves problems with limit cycles.

2-step Extragradient

$$\mathbf{z}_{1}^{k} = \mathbf{z}^{k} - \gamma_{k,1} F \mathbf{z}^{k}$$
$$\bar{\mathbf{z}}^{k} = \mathbf{z}_{1}^{k} - \gamma_{k,2} F \mathbf{z}_{1}^{k}$$
$$\mathbf{z}^{k+1} = \mathbf{z}^{k} - \alpha_{k} F \bar{\mathbf{z}}^{k}$$

2-step Extragradient

$$z_1^k = z^k - \gamma_{k,1} F z^k$$
$$\bar{z}^k = z_1^k - \gamma_{k,2} F z_1^k$$
$$z^{k+1} = z^k - \alpha_k F \bar{z}^k$$

Take stepsizes $\gamma_{k,1} = \delta_1/L$, $\gamma_{k,2} = \delta_2/L$

$$\rho > \begin{cases} -\frac{1}{L} \left[1 - \frac{1}{(1+\delta_1)(1+\delta_2)} \right] & \text{if } \delta_1 + \delta_2 \le 1 \\ -\frac{1}{L} \left[\frac{\delta_1(1-\delta_1^2 - \delta_2^2)}{2(1-\delta_1^2)(1-\delta_2^2)} + \frac{\delta_2}{1+\delta_2} \right] & \text{if } \delta_1 + \delta_2 > 1 \end{cases}$$

2-step Extragradient

$$z_1^k = z^k - \gamma_{k,1} F z^k$$
$$\bar{z}^k = z_1^k - \gamma_{k,2} F z_1^k$$
$$z^{k+1} = z^k - \alpha_k F \bar{z}^k$$

Take stepsizes $\gamma_{k,1} = \delta_1/L$, $\gamma_{k,2} = \delta_2/L$

$$\rho > \begin{cases} -\frac{1}{L} \left[1 - \frac{1}{(1+\delta_1)(1+\delta_2)} \right] & \text{if } \delta_1 + \delta_2 \le 1 \\ -\frac{1}{L} \left[\frac{\delta_1(1-\delta_1^2 - \delta_2^2)}{2(1-\delta_1^2)(1-\delta_2^2)} + \frac{\delta_2}{1+\delta_2} \right] & \text{if } \delta_1 + \delta_2 > 1 \end{cases}$$

Relation between the upper bound of $-\rho L$ and δ_1 , δ_2

2-step Extragradient

$$z_1^k = z^k - \gamma_{k,1} F z^k$$
$$\bar{z}^k = z_1^k - \gamma_{k,2} F z_1^k$$
$$z^{k+1} = z^k - \alpha_k F \bar{z}^k$$

Take stepsizes $\gamma_{k,1} = \delta_1/L$, $\gamma_{k,2} = \delta_2/L$

$$\rho > \begin{cases} -\frac{1}{L} \left[1 - \frac{1}{(1+\delta_1)(1+\delta_2)} \right] & \text{if } \delta_1 + \delta_2 \le 1 \\ -\frac{1}{L} \left[\frac{\delta_1(1-\delta_1^2 - \delta_2^2)}{2(1-\delta_1^2)(1-\delta_2^2)} + \frac{\delta_2}{1+\delta_2} \right] & \text{if } \delta_1 + \delta_2 > 1 \end{cases}$$

•
$$\delta_1=\delta_2=1/2,\ \rho>-5/9L$$

Relation between the upper bound of $-\rho L$ and δ_1 , δ_2

2-step Extragradient

$$z_1^k = z^k - \gamma_{k,1} F z^k$$
$$\bar{z}^k = z_1^k - \gamma_{k,2} F z_1^k$$
$$z^{k+1} = z^k - \alpha_k F \bar{z}^k$$

Take stepsizes $\gamma_{k,1} = \delta_1/L$, $\gamma_{k,2} = \delta_2/L$

$$\rho > \begin{cases} -\frac{1}{L} \left[1 - \frac{1}{(1+\delta_1)(1+\delta_2)} \right] & \text{if } \delta_1 + \delta_2 \le 1 \\ -\frac{1}{L} \left[\frac{\delta_1(1-\delta_1^2 - \delta_2^2)}{2(1-\delta_1^2)(1-\delta_2^2)} + \frac{\delta_2}{1+\delta_2} \right] & \text{if } \delta_1 + \delta_2 > 1 \end{cases}$$

•
$$\delta_1 = \delta_2 = 1/2, \ \rho > -5/9L$$

•
$$\delta_1 \approx 0.52212, \ \delta_2 \approx 0.644793, \ \rho > -0.5834/L$$

Relation between the upper bound of $-\rho L$ and δ_1 , δ_2

n-step Extragradient

$$z_1^k = z^k - \gamma_{k,1}Fz^k$$

$$z_2^k = z_1^k - \gamma_{k,2}Fz_1^k$$

$$\vdots$$

$$\bar{z}^k = z_{n-1}^k - \gamma_{k,n-1}Fz_{n-1}^k$$

$$z^{k+1} = z^k - \alpha_kF\bar{z}^k$$

n-step Extragradient

$$z_{1}^{k} = z^{k} - \gamma_{k,1}Fz^{k}$$

$$z_{2}^{k} = z_{1}^{k} - \gamma_{k,2}Fz_{1}^{k}$$

$$\vdots$$

$$\bar{z}^{k} = z_{n-1}^{k} - \gamma_{k,n-1}Fz_{n-1}^{k}$$

$$z^{k+1} = z^{k} - \alpha_{k}F\bar{z}^{k}$$

• Take
$$\gamma_{k,i} = \delta_i / L, i \in [n]$$
. If $\sum_{i=1}^n \delta_i \le 1$,
 $\rho > -\frac{1}{L} \left(1 - \prod_{i=1}^n \frac{1}{1 + \delta_i} \right)$

n-step Extragradient

$$z_{1}^{k} = z^{k} - \gamma_{k,1}Fz^{k}$$

$$z_{2}^{k} = z_{1}^{k} - \gamma_{k,2}Fz_{1}^{k}$$

$$\vdots$$

$$\bar{z}^{k} = z_{n-1}^{k} - \gamma_{k,n-1}Fz_{n-1}^{k}$$

$$z^{k+1} = z^{k} - \alpha_{k}F\bar{z}^{k}$$

• Take $\gamma_{k,i} = \delta_i / L, i \in [n]$. If $\sum_{i=1}^n \delta_i \leq 1$,

$$\rho > -\frac{1}{L} \left(1 - \prod_{i=1}^{n} \frac{1}{1+\delta_i} \right)$$

• Convergence guarantee for $\rho > -(1-1/e)/L \approx -0.632/L$ with invariant stepsizes $\gamma_{k,i} = 1/nL$, $i \in [n]$ and large enough n

Introducing Adaptive Exploration

• Perspective of projection

Introducing Adaptive Exploration

• Perspective of projection

• MDEG: Max Distance Extragradient

Introducing Adaptive Exploration

Perspective of projection

- MDEG: Max Distance Extragradient
- Sub-iteration stops when projection distance decreases

Examples

• *n*-step EG converges for $\rho < -1/2L$.

(b)

Examples

- n-step EG converges for $\rho < -{\rm 1/2L}.$
- MDEG converges break out of the limit cycle and converges to the stationary point.

(c)

Examples

- n-step EG converges for $\rho < -{\rm 1/2L}.$
- MDEG converges break out of the limit cycle and converges to the stationary point.
- MDEG bypasses the highly nonmonotonic regions with local $\rho L \approx -3.04076$ and converges to the stationary point.

Thank you!