Memory-Consistent Neural Networks for Imitation Learning

Kaustubh Sridhar, Souradeep Dutta, Dinesh Jayaraman, James Weimer, Insup Lee

Motivation

Compounding errors in imitation learning on offline datasets: can we avoid them altogether?

Current methods include corrective data from online experience, queryable experts, reward labels, etc.

Motivation

Compounding errors in imitation learning on offline datasets: can we avoid them altogether?

Current methods include corrective data from online experience, queryable experts, reward labels, etc.

But what if we could design a constrained model class for simple (scalable) behavior cloning?

Problem Formulation

Unknown expert policy π^*

Demonstrations dataset
$$D=ig\{(s_0,a_0),(s_1,a_1),\ldots,(s_N,a_N)ig\}$$

Objective: reduce suboptimality gap

$$J(\pi^*) - J(\hat{\pi})$$

where
$$J(\pi) = \mathbb{E}_{\pi} igg[\sum_{t=1}^{H} \mathcal{R}(s_t, a_t) igg]$$

Key Idea

New model class for behavior cloning that interpolates between nearest "memory" and vanilla neural net:

Behaves like nearest neighbors near "memories" and vanilla neural net away from "memories".

New model class for behavior cloning that interpolates between nearest "memory" and vanilla neural net:

Behaves like nearest neighbors near "memories" and vanilla neural net away from "memories".

Neural net params Codebook of "memories"

New tanh-like activation.

Training a MCNN

* This clustering technique [Fritzke NeurIPS 1994] produces a graph and hence was (initially) chosen for fast inference. But, brute force search at inference time on GPUs is faster! (cue GPUs go brr meme)

Training a MCNN

(2) Learn MCNN

$$f_{\theta,\mathcal{B}}^{MC}(x) = \underbrace{f^{NN}(x)\left(e^{-\lambda \ d(x,s')}\right)}_{\text{Nearest Memory Neighbour Function}} + \underbrace{L\left(1 - e^{-\lambda \ d(x,s')}\right) \ \sigma(f^{\theta}(x))}_{\text{Constrained Neural Network Function Class}}$$

Maps input to nearest memory (retrieval)

Vanilla neural net of input

Teaser (for results)

Teaser (for results)

Guarantees

Assumption 4.3 (Realizability). We assume that the expert policy π^* belongs to the function class \mathfrak{F} .

Definition 4.4 (Most Isolated State). For a given set of memory points $\mathcal{B}|_S$, we define the most isolated state $s_{\mathcal{B}|_S}^I := \underset{s \in S}{\operatorname{arg\,max}} \left(\underset{m \in \mathcal{B}|_S}{\min} d(s, m) \right)$, and consequently the distance of the most isolated point as $d_{\mathcal{B}|_S}^I = \underset{m \in \mathcal{B}|_S}{\min} d(s_{\mathcal{B}|_S}^I, m)$

Theorem 4.7. The sub-optimality gap $J(\pi^*) - J(\hat{\pi}) \leq \min\{H, H^2 | \mathcal{A} | L\left(1 - e^{-\lambda d_{\mathcal{B}|_S}^I}\right)\}$

Corollary 4.8. if
$$\mathcal{B}_i \subseteq \mathcal{B}_j$$
 and $H \ge H^2 |\mathcal{A}| L \left(1 - e^{-\lambda d_{\mathcal{B}|_S}^I}\right)$
lower performance gap

"more (widespread) memories lead to a lower performance gap (upto a limit)"

Datasets and Envs:

Adroit (D4RL) Pen, Hammer, Relocate, and Door [Proprioception, 24-30 dim action spaces, 5k (human) to 1M (expert) transitions] D4RL CARLA [Images, 2D actions, 100k (expert) transitions] Franka Kitchen [Proprioception, high multimodality, 130k (human) transitions]

Architecture and loss:

- 1. MCNN-MLP with Mean Squared Error
- 2. MCNN-Diffusion with a Denoising Diffusion Process and Mean Squared Error to predict noise/result at every step
- 3. MCNN-Behavior Transformer (BeT) with predicting Action Buckets (via Cross Entropy Loss) and Action Offsets (via Mean Squared Error)
- 4. Embedding images with an off-the-shelf ResNet 34 encoder

with similar significant improvements in other Adroit tasks, CARLA, Franka Kitchen.

Key Takeaways

- 1. MCNN can help with generalization to test envs from small datasets with little hyperparameter tuning.
- 2. Broadly, semi-parametric methods may hold the key to generalization in robotics/embodied AI (already a key part of the RAG+LLM world).

More information can be found at ...

bit.ly/mcnn

