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Motivation

Compounding errors in imitation learning on offline datasets: can we avoid them altogether?

Current methods include corrective data from online experience, queryable experts, reward labels, etc.
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Motivation

Compounding errors in imitation learning on offline datasets: can we avoid them altogether?

Current methods include corrective data from online experience, queryable experts, reward labels, etc.

But what if we could design a constrained model class for simple (scalable) behavior cloning?
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Problem Formulation

%

Unknown expert policy T
Demonstrations dataset D = {(sg, ao), (s1,a1),...,(sn,an)}
Objective: reduce sub- J(m*) — J(7)

optimality gap

where  J(1) =E, [i R(st, at)]



Key Idea

New model class for behavior cloning that interpolates between nearest “memory” and vanilla neural net:

Behaves like nearest neighbors near “memories” and vanilla neural net away from “memories”.

Nearest Neighbor Function I Neural Network Function Class m=sss Memory-Consistent Neural Net Class
y = fNN(X)e—A d(x, s’)

y=L(1—e*4%2)) g(f(x)) y = f5C(x)
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Key Idea

Exponential term with Interpolation in space Amplitude knob (1 - exponential

rate of change knob \ / /ﬁw)

B @) = FN@) (e D) 4 L(1- e D) o(f ()
N S LA _

Nearest Memory Neighbour Function = Constrained Neural Network Fungtion Class

Neural net params Codebook of “memories” New tanh-like activation.



Training a MCNN

(1) Learn memories _
Nearest neighbours of neural gas

nodes in dataset

Neural gas clustering algorithm* Neural gas _}

State or (image) embedding space Codebook of memories (graph or list)

>

* This clustering technique [Fritzke NeurlPS 1994] produces a graph and hence was
(initially) chosen for fast inference. But, brute force search at inference time on GPUs is
faster! (cue GPUs go brr meme)



Training a MCNN

(2) Learn MCNN

MC _ NN —Xd(z,s’ —Xd(z,s’ 0
M@ = V@) () + L (1 e D) o(f (@)
NearestfMemory Neighbour Function = Constrained Neural Network Function|Class

Maps input to nearest memory (retrieval) Vanilla neural net of input

Sample batch B from D.
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Teaser (for results)
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Guarantees

Assumption 4.3 (Realizability). We assume that the expert policy 7* belongs to the function class §.

Definition 4.4 (Most Isolated State). For a given set of memory points B|g, we define the most

isolated state 32[3|s := arg max ( miéll d(s, m)) , and consequently the distance of the most isolated
seS meDB|s

ointasdLl, = min d(sL, .m
P Bls meB|s (Bls’ )

Theorem 4.7. The sub-optimality gap J(n*) — J(#) < min{H, H?|A|L (1 _e dlISIS)}

' / I
Corollary 4.8. if B, C B; and H > H?A|L (1 —e dBIs)
- lower performance gap

“more (widespread) memories lead to a lower performance gap (upto a limit)”




Results

Datasets
and Envs:
Adroit (D4RL) Pen, Hammer, Relocate, and Door D4RL CARLA Franka Kitchen
[Proprioception, 24-30 dim action spaces, [Images, 2D actions, [Proprioception,
5k (human) to 1M (expert) transitions] 100k (expert) high multimodality,
transitions] 130k (human)
transitions]
Architecture and 1. MCNN-MLP with Mean Squared Error
loss: 2. MCNN-Diffusion with a Denoising Diffusion Process and Mean Squared Error to

predict noise/result at every step

3. MCNN-Behavior Transformer (BeT) with predicting Action Buckets (via Cross Entropy
Loss) and Action Offsets (via Mean Squared Error)

4. Embedding images with an off-the-shelf ResNet 34 encoder
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with similar significant improvements in other Adroit tasks, CARLA, Franka Kitchen.




Key Takeaways

. MCNN can help with generalization to test envs from small datasets with
little hyperparameter tuning.

. Broadly, semi-parametric methods may hold the key to generalization in
robotics/embodied Al (already a key part of the RAG+LLM world).




More information can be found at ...

bit.ly/mcnn



http://bit.ly/mcnn

