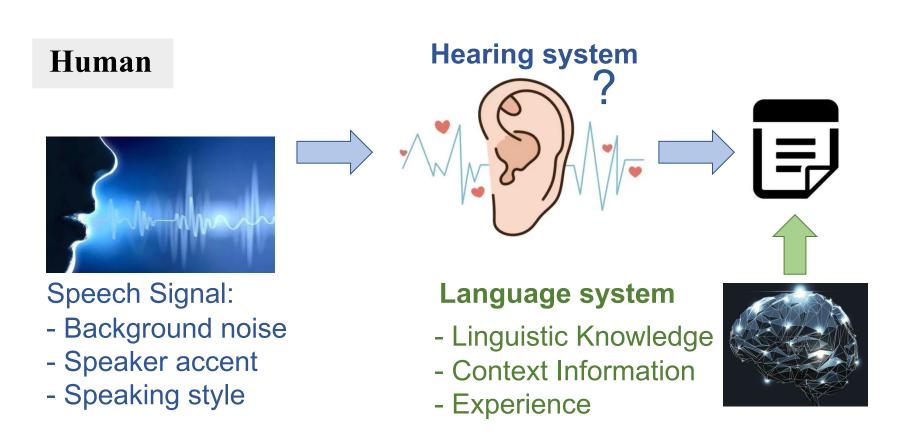
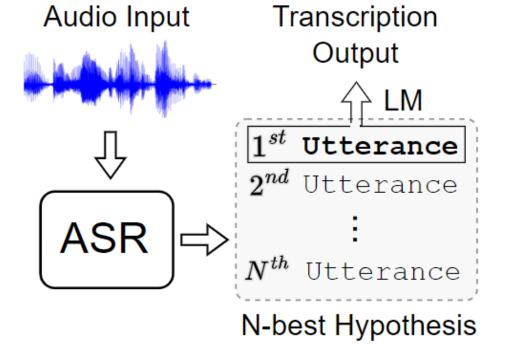
It's Never Too Late: "Fusing" Acoustic Information into Larg

Language Models (LLMs) for Automatic Speech Recognition

Chen Chen, Ruizhe Li, Yuchen Hu, Ruizhe Li, Sabato Marco Siniscalchi, Pin-Yu Chen, Eng Siong Chng, and Huck Yang

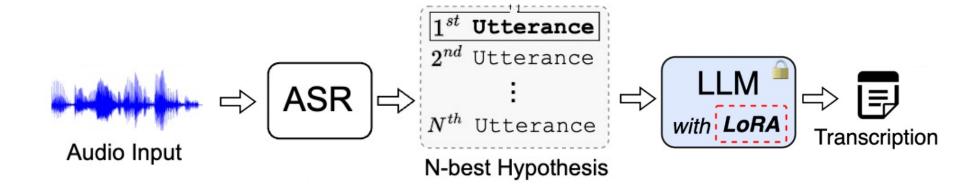
CHEN1436@e.ntu.edu.sg, hucky@nvidia.com





Research Motivation

Language system contributes to the robustness of our auditory system.


LM in ASR: Rescoring

Traditional LM Rescoring:

- (i) Beam search → N-best list.
- (ii) In-domain LM → Top1 candidate
- (iii) Discarding others.

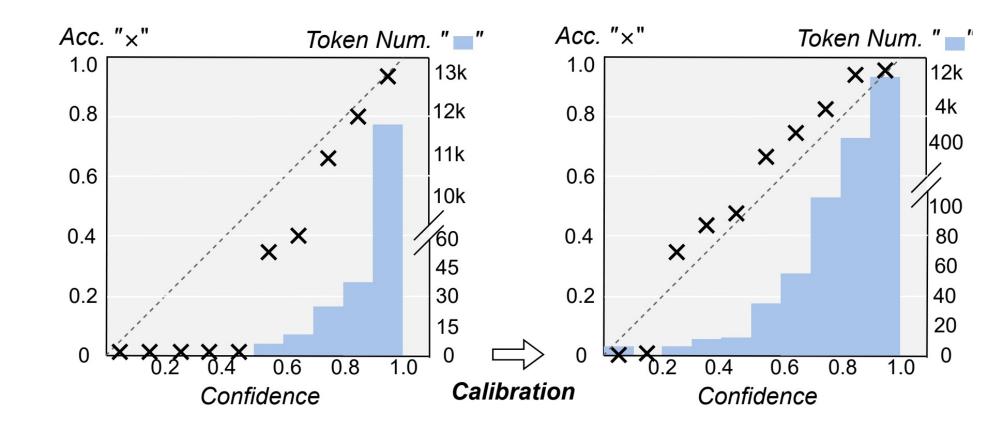
LLM in ASR: Generative Error Correction [1,2,3,4]

- GER makes full use of N-best hypos and LLM to predict GT.
- Can we integrate acoustic information in GER process?

[1] Chen, et al. Hyporadise: An open baseline for generative speech recognition with large language models, NeurIPS 2023.

[2] Hu et al. LLMs are Efficient Learners of Noise-Robust Speech Recognition, ICLR 24 [3] Yang et al. Generative ASR Error Correction with LLMs and Task-Activating Prompting, ASRU 2023 [4] Radharishnan et al. Whispering LLaMA: A Cross-Modal Generative Error Correction Framework for Speech Recognition, EMNLP 2023

"3 Body Problem" of N-Best, ASR, LLM


Fusion Strategy LLM Tokenizer N-best List Encoder N-best List Encoder MHA $X_{enc} lacksquare$ $X_{tok} lue$ 0...0000 + 88...8 Adapte Decoder LLM N-best List (i) Early fusion (ii) Mid fusion (iii) Late fusion

- (i) Early Fusion: Concatenate speech representation and word embedding.
- (ii) Mid Fusion: Leverage cross-attention mechanism for text-speech alignment.
- (iii) Late Fusion: Combine the token-level logits in auto-regressive decoding.

UADF: Uncertainty-Aware Dynamic Fusion

- Calibration: align the model confidence with true accuracy

$$\operatorname{Conf}_{llm}(f^{llm}, \tau_1) \approx 1 - \operatorname{TER}_{llm}(f^{llm})$$

- Fusion: dynamically assign token-level weight according to uncertainty

$$P(Y_T) = \prod_{t=0}^{T} \operatorname{softmax}(\frac{f_t^{llm}}{\tau_1}) + (\operatorname{sigmoid}(\mathcal{U}_t^{llm}) - \beta) \operatorname{softmax}(\frac{f_t^{asr}}{\tau_2})$$

Fusing-LLM Experimental Result

WER on WSJ and ATIS datasets

Table 1: WER (%) and WERR results of early, mid, and late fusion on ATIS and WSJ dataset. "W2v.", "Hub." and "Whis." indicate Wav2vec2-large, HuBERT and Whisper model, respectively. "Conc.", "Atten.", and "Stat." indicate concatenation, cross-attention and static fusion strategies introduced in 3. "GER" denotes the H2T results of LLM that is consistent across the three fusion

Acoustic Info.	Fusion		GER		ASR-only		WER↓		WERR ↑	
Acoustic IIIIo.	where	how	ATIS	WSJ	ATIS	WSJ	ATIS	WSJ	ATIS	WSJ
X_{tok} by W2v. by Hub.	early	Conc.	1.61	2.83	-	-	2.16	3.21	-34.2%	-13.4%
					-	-	2.02	3.11	-25.5%	-9.9%
X_{enc} by Whis.	mid	Atten.	1.61	2.83	-	-	1.75	2.59	-8.7%	8.5%
X_{dec} by ASR	late	Stat. UADF	1.61	2.83	4.67	9.21	1.36 1.24	2.55 2.47	15.5% 23.0%	9.9% 12.7%

ASR-LLM Ablation Study

Table 2: Ablation study of WER (%) and WERR results on the ATIS dataset based on UADF using late fusion. The difference between the system ID-1 to ID-3 is the different performance of ASRonly model (X_{dec}) , and the system ID-4 to ID-5 varies based on the different combination of "Cali." and "Dyn.". "Static" does not utilize either "Cali." and "Dyn.".

System ID	GER	ASR-only	ID-C		Static		UADF			
ID	GEK	(X_{dec})	WER	WERR	WER	WERR	Cali.	Dyn.	WER	WERR
1		12.16	2.41	-49.7%	1.51	6.2%	/	√	1.52	5.6%
2	1.61	8.22	1.96	-21.7%	1.45	9.9%	✓	✓	1.39	13.7%
3		4.67	1.57	2.5%	1.36	15.5%	✓	✓	1.24	23.0%
4	1.61	1 67	1 57	2.50/	1 26	15.5%	/	X	1.33	17.4%
5 1.61	4.67	1.57	2.5%	1.36	13.3%	X	1	1.39	13.7%	

Noise-robustness on CHiME

Noise Type	ASR-only	GER	St WER	atic WERR	WER	ADF <i>WERR</i>
bus	12.45	8.67	8.05	7.2%	7.98	8.0%
caf	11.48	6.96	6.37	8.5%	6.22	10.6%
ped	11.36	5.49	4.96	9.8%	4.82	12.2%
str	12.28	5.86	5.28	9.9%	5.28	9.9%
Avg.	11.89	6.75	6.17	8.6%	6.08	9.9%

Conclusion

- We focus on fusing acoustic information into LLM-based GER.
- We present a simple yet effective solution UADF that performs late fusion in the auto-regressive decoding process.
- UADF dynamically assimilates information from the audio modality, leading to more reasonable token-level decisions.
- UADF seamlessly adapts to noise-robust ASR as well as AVSR.