
Interpretable Generative AI

Samyadeep Basu
3rd year CS PhD @ UMD

@BasuSamyadeep

Advisor: Dr. Soheil Feizi



Outline

• Localizing and Editing Knowledge in Text-to-Image Generative 
Models
- ICLR 2024

• On Mechanistic Knowledge Localization in Text-to-Image 
Generative Models
- Under Submission

Collaborators: Soheil Feizi, Varun Manjunatha, Ryan Rossi, Vlad Morariu, Cherry Zhao



Rise of Generative AI Models

Text-to-Image Models Large Language Models



GenAI in Practice



GenAI Risks

Generation of misinformation Deep Fake IP/Copy right issues



GenAI Risks

Generation of misinformation Deep Fake IP/Copy right issues

Can we mitigate this risk by understanding 
how diffusion models process information 
and then editing the model?
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Motivation
Text-to-Image Generative Models (e.g., Stable-Diffusion) have unprecedented 
image quality, but it is not understood how knowledge on visual attributes 
(e.g., style / objects) is stored!

Painting in the style of Van Gogh

The President of United States of 
America

Generate copyrighted styles!

Knowledge can become outdated!



Motivation



Motivation
• Model Interpretability can give a lens towards “where to edit” in text-

to-image models
• Retraining the model by removing or updating certain concepts is expensive!

Understand where attribute 
specific visual knowledge resides

Targeted Model Editing on the 
Localized Knowledge

Model Editing: Updating a very small fraction of targeted weights from *an already 
trained* model

style, action, objects



Illustration of Model Editing

”Taj Mahal in the 
style of Van Gogh ”

”President of the 
United States of 
America"

Updating Stale Knowledge or Removing Style/Copyrighted Objects

" Taj Mahal in the 
style of Van Gogh”

“President of the 
United States of 
America”

Before Model Editing After Model EditingUpdating targeted 
weights

Used as a surrogate for copyrighted 
artistic styles



Related Works
• No principled identification of “important” components in diffusion models 

for visual concepts
• Primary focus in related works is on cross-attn or all parameters in the UNet

Self-Attn Cross-
Attn MLP ResNet Self-Attn Cross-

Attn
ResNet Self-Attn Cross-

Attn ResNet

ReFACT modifies the text-
encoder

Up-Block Mid-Block Down-Block

UNet in Stable-Diffusion

Text-Encoder

TIME. Layout-free, Attn-
Refocus modify the all Cross-Attn 
Layer

Ablating Concepts finetunes the parameters 
of diffusion model

https://arxiv.org/abs/2306.00738
https://arxiv.org/abs/2303.08084
https://arxiv.org/pdf/2306.05427.pdf
https://arxiv.org/pdf/2306.05427.pdf
https://arxiv.org/pdf/2306.05427.pdf
https://arxiv.org/pdf/2303.13516.pdf


Our approach based on Causal Mediation Analysis
• Use Causal Mediation Analysis (CMA) to identify relevant components in 

diffusion models and then edit those components
• Our framework can potentially identify regions in the diffusion 

models where visual-attribute specific knowledge is stored



Causal Mediation Analysis
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Step 1: Clean Model

Residual 
connections

x

Store the activations of 
each layer



….. …..

Denoising UNet

Cross-Attn

Self-Attn

ResNet

C’ = ‘Airplane in Van Gogh Style’

CLIP Text-Encoder

Embedding

Self-Attn-0
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Step 2: Corrupted Model

Add Gaussian Noise to the token 
embeddings corresponding to the 
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Gogh in case of style)

Residual 
connections

x’

Causal Mediation Analysis
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where v = resnet

Causal Mediation Analysis
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Causal Mediation Analysis



Scoring the Generation with Restored Model

• CLIP-Score
• Cosine Similarity of Generated Image Embedding with the Original Caption 

Embedding 
• Score = CLIP-S(x(v), c) – CLIP-S(x’, c) 
• Also known as Indirect Estimation Effect in Causality 

Computes how far off the restored model 
is from the corrupted model

‘Airplane in Van 
Gogh Style’

Higher CLIP-Score

Lower CLIP-Score
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Diffused Knowledge in Unets
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Original Corrupted Causal State Non-Causal State

Prompt: ‘Airplane in the style of Van Gogh’

Prompt: ‘A photo of a vase in the kitchen’

Prompt: ‘A photo of a dog running’

Prompt: ‘A black bag’

self-attention-0

down-1-resnet-1

mid-block-cross-attn

down-1-ff

Style

Objects

Action

Color

• Difficult to edit the model to 
update the stored knowledge in the 
Unet

•  Causal Layers are distributed in the UNet, 
with a different distribution for distinct 
attributes
• Self-Attn-0 is activated only for style and not 

for other attributes
• Mid-Cross-attn is activated for action, but not 

for other attributes
• Down-1-resnet-1 is activated for all attributes



Causal Tracing for the Text-Encoder
First self-attn layer corresponding 
to last subject-token

Only one causal state in the CLIP-
Text Encoder

Opposite observation to LLMs, 
where mid-MLP layers are causal

‘Photo of a bottle in a room'  

Step 1: Clean Model 
Store activations

‘Photo of a bottle in a room'  

Step 2:  Corrupted 
Model

‘Photo of a bottle in a room'  

Step 3: Restored 
Model

Copy / 
Restoration 
Operation

UNet + Classifier-
Free Guidance

Generate Image!

Embedding 
layer

Embedding 
layer

Embedding 
layer



Example

Original (SD) Corrupted

Prompt: ‘Photo of a bottle in a room’

Restoring self-attn-0 at different tokens in the caption 

First Token Second Token Third Token Last Subject 
Token (‘bottle’)

Last Token (‘room’)

Causal State

Bottle appears!



Example

Original (SD) Corrupted

Prompt: ‘Photo of a bottle in a room’

Restoring self-attn-8 at different tokens in the caption 

First Token Second Token Third Token Last Subject 
Token (‘bottle’)

Last Token (‘room’)

Non-Causal 
State

Bottle does not 
appear!



Causal Tracing for the Text-Encoder

Benefits of Identifying Localized Causal States 

(i) Can potentially lead to designing editing methods which do not need fine-tuning
(ii) Potentially, one can produce a closed-form update solution, which can perform 

model editing in a scalable way



DiffQuickFix: Model Editing under a second!!

Self-Attn-0
M

LP-0

Self-Attn-1
M

LP-1
Self-Attn-2

M
LP-2

Self-Attn-3
M

LP-3

Self-Attn-11
M

LP-11

….
W_k W_v W_q

We patch this component

• Only 0.06% parameters
• 1000x faster than competing method 

Ablating Concepts
• Editing operation takes ~ 0.6seconds as it can 

be solved in convex optimization form

Input to the 
W_out

Output from 
W_out

Regularization to 
ensure weights do 
not deviate much

W_out
We patch this 
componentEditing the first self-attn layer

Key (k*): Concept to Delete (e.g., Van Gogh)
Value(v*): Concept to Replace the key with 
(e.g., painting)

Data-Free!!

No fine-tuning required – 
Closed form update!

Model Editing in 
less than a second!

https://arxiv.org/abs/2303.13516


Editing only the causal layer leads to intended model 
changes

Layer 
1

Layer 
2

Layer 
3

Layer 
4

Layer 
5

Layer 
6

Layer 
7

Layer 
8

Layer 
9

Layer 10 Layer 11

Original SD Layer-0 (Self-attn)

Editing the self-attn-0 
layer leads to intended 
model changes

Prompt : ‘The President of the 
United States’



Edit: Ablating Styles

Original Model Edited Model

Monet ablated Model: 
‘A painting of a town in the style of Monet’ 

Van Gogh ablated Model: 
‘Taj Mahal in the style of Van Gogh’ 

Removing Monet 
style from the 
model

Removing Van 
Gogh style from 
the model



Edit: Updating Knowledge

Original Model Edited Model

Prompt: “The President of the United States”

Updating the model 
with the correct 
‘President’ i.e., Joe 
Biden

Prompt: “The British Monarch”

Updating the model 
with the ‘British 
Monarch’ i.e., Prince 
Charles



Edit: Ablating Objects

Original Model Edited Model

R2D2 ablated model: “R2D2 in front of the Eiffel Tower ”

Snoopy ablated model: “Snoopy in front of the Eiffel Tower ”

Replacing fine-grained 
objects from the 
model



Edit: Multiple Edits

Original Model Edited Model

R2D2 and Snoopy ablated model

Replacing multiple 
fine-grained objects 
from the model

Prompt: R2D2

Prompt: Snoopy



Comparing with Other Methods

Causal Layer (a) (b)

Editing Causal Layers vs. Non-Causal Layers Comparison with Other Methods

1s ~6min ~6.5min 1s ~6min ~6.5min

Editing time 
per concept

Effectiveness of Multi-Concept Ablated Model

(c)Causal Layer (a) (b)

Editing Causal Layers vs. Non-Causal Layers Comparison with Other Methods

1s ~6min ~6.5min 1s ~6min ~6.5min

Editing time 
per concept

Effectiveness of Multi-Concept Ablated Model

(c)
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Motivation

Distributed Causal States in the 
UNet

No significantly unique causal 
states in the text-encoder



Overview

We understand how generations can be controlled by a 
subset of cross-attention layers



Locogen : Detecting Locations for Controlling 
Output Generations

Iterate over a window
Obtain a set of cross-attention 
layers

Perform the 
intervention

Select the appropriate 
set of cross-attention 
layers



Locogen : Detecting Locations for Controlling 
Output Generations



Localization Results



Localization Results

DeepFloyd



LocoEdit: Editing a small set of Cross-Attn

W_k W_v W_q

We patch this component

• Scalable to different open-source text-to-
image models

• Significantly fast: ~1.9seconds per edit

Input to the 
W_k

Value
Regularization to 
ensure weights do 
not deviate much

We patch these components

X_orig: Concept to Delete (e.g., Van Gogh)
Value: Concept to Replace the key with (e.g., 
painting)

Data-Free!!

No fine-tuning required – 
Closed form update!

Model Editing in 
less than a second!



LocoEdit Results



LocoEdit Results



Advantages of LocoEdit

Similar 
performance as 
DiffQuickFix

Improves over 
failure cases for 
SDv2 and scales 
to SD-XL / 
OpenJourney



Conclusion

• Interpretation of GenAI

• We provide a unified framework to understand knowledge localization and 
model editing in text-to-image generative models 

@BasuSamyadeep

Checkout our other works: samyadeepb@github.io


