

Learning Unsupervised World Models for Autonomous Driving via Discrete Diffusion

ICLR 2024

Lunjun Zhang

g Yuwen Xiong Ze Yang Sergio Casas Rui Hu Raquel Urtasun

The Era of Foundation Models

Vision:

BigGAN (Brock et al, 2018)

DALL-E 2 (Ramesh et al, 2022)

Segment Anything (Kirillov et al, 2023)

Robotics:

What foundation model should robotics scale?

Learning a World Model

- World Models **predict the next observation** in an environment given the current action and the past observations.
- Learning a world model is an **unsupervised learning** process: it requires no labels or rewards.
- This idea has been around for a long time, dating back to adaptive control and model-based reinforcement learning.

Bottlenecks of Scaling World Models

- Training World Models to predict the next observation is very similar to training Language Models to predict the next token.
- What **bottlenecks** held us back from scaling unsupervised world models on robotic applications such as autonomous driving?
 - Why hasn't it become the *default* model to train for robotics?

Predicting in **complex** and **unstructured** observation space

The **scalability** of the generative model

A Scalable Recipe for Learning World Models

Two bottlenecks:

Predicting in **complex** and **unstructured** observation space

The **scalability** of the generative model

Solution:

Tokenize Everything

Discrete Diffusion

Bottleneck 1: Complex / Unstructured Observation Space

Designing a generative model that captures **meaningful likelihoods** can be highly non-trivial!

Self-Driving Datasets

KITTI (Geiger et al, 2013); NuScenes (Caesar et al, 2019); Argoverse 2 (Wilson et al, 2023)

Solution: Tokenize Everything

Bottleneck 2: Scalability of the Generative Model

- Autoregressive GPT training can be applied on any tokenized data, but with one problem: GPTs only decode one token at a time.
- In robotics, a single observation has tens of thousands of tokens, so parallel decoding of tokens becomes a must.
 - Decoding all the tokens of an observation in parallel would incorrectly assume that all those tokens are conditionally independent given past observations.

Solution: Discrete Diffusion

- Discrete diffusion is a natural solution to this problem.
 - Decodes **arbitrary** number of tokens at each step
 - Can **iteratively refine** the already decoded tokens

Austin et al, "Structured Denoising Diffusion Models in Discrete State-Spaces", 2021

Chang et al, "MaskGIT: Masked Generative Image Transformer", 2022.

Discrete Diffusion Made Simple

- We modify the popular Masked Generative Image Transformer (MaskGIT) into an **absorbing-uniform discrete diffusion** model.
- It is essentially a BERT trained to both infill and denoise.

Algorithm 1 Training		Algorithm 2 Sampling		
1: repeat	1: repeat 1: \mathbf{x}_K = all mask token		c = all mask tokens	
2: x_0 :	$: \{1,\cdots, V \}^N \sim q(\mathbf{x}_0)$	2: for	$k = K - 1, \ldots, 0$ do	
3: u_0	$\sim \text{Uniform}(0,1)$	3:	$ ilde{\mathbf{x}}_0 \sim p_ heta(\cdot \mid \mathbf{x}_{k+1})$	
4: Ran	Randomly mask $ \gamma(u_0)N $ tokens in \mathbf{x}_0		$\mathbf{l}_{k} = \log p_{\theta}(\tilde{\mathbf{x}}_{0} \mid \mathbf{x}_{k+1}) + Gumbel(0, 1) \cdot k/K$	
$3: u_1 $	$\sim \text{Omform}(0,1)$	5.	On non-mask indices of \mathbf{x}_{k+1} : $l_k \leftarrow +\infty$	
6: Ra	indomly noise $(u_1 \cdot \eta)\%$ of remaining token	15 ⁵ .	$M = \left[v(k/K) N \right]$	
7: \mathbf{x}_k	\leftarrow masked-and-noised \mathbf{x}_0	0.	$M = \gamma(k/\mathbf{R})N $	
9.		7:	$\mathbf{x}_k \leftarrow \mathbf{x}_0$ on top- <i>M</i> indices of \boldsymbol{l}_k	
8: arg	$g \max_{\theta} \log p_{\theta}(\mathbf{x}_0 \mid \mathbf{x}_k)$ with cross entropy	8: en	d for	
9: until co	until converged 9: r		return \mathbf{x}_0	

Chang et al, "MaskGIT: Masked Generative Image Transformer", 2022.

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 2018.

What foundation model should robotics scale?

Our proposal for learning an **unsupervised world model**:

- Tokenize everything by training VQVAE
- Discrete diffusion as the core generative model
- Learn to predict the future

Tokenize the 3D World for Autonomous Driving

Observation

Reconstruction

Unsupervised 4D World Model for Autonomous Driving

predict future frames

A Mixture of Training Objectives

We train the world model on a **mixture** of training objectives

- 50% of the time: condition on the past, predict the future.
- 40% of the time, denoise the past and the future jointly.
- 10% of the time, denoise each frame individually.

The last one enables classifier-free diffusion guidance at inference.

Results

 When applied to learning world models on point cloud observations, our model reduces prior SOTA Chamfer distance by more than 65% for 1s prediction, and more than 50% for 3s prediction.

Nu	IScer	nes
----	-------	-----

NuScenes 1s	Chamfer↓	L1 Med↓	AbsRel Med↓
SPFNet	2.24	-	-
S2Net	1.70	-	-
4D-Occ	1.41 0.36	0.26	4.02 1.30
Ours		0.10	
NuScenes 3s			
SPFNet	2.50	-	-
S2Net	2.06	-	-
4D-Occ	1.40	0.43	6.88
Ours	0.58	0.14	1.86

KITTI

Argoverse 2

KITTI 1s	Chamfer↓	L1 Med↓	AbsRel Med↓
ST3DCNN	4.11	Ξ.	-
4D-Occ	0.51	0.20	2.52
Ours	0.18	0.11	1.32
KITTI 3s			
ST3DCNN	4.19	-	_
4D-Occ	0.96	0.32	3.99
Ours	0.45	0.17	2.18
1s Prediction	Chamfer↓	L1 Med↓	AbsRel Med↓
4D-Occ	1.42	0.24	1.67
Ours	0.26	0.15	0.94
3s Prediction			
4D-Occ	1.99	0.42	2.88
Ours	0.55	0.19	1.26

Visualizations

• Highly accurate Accurate Near-Term 1s Prediction

Visualizations

• Diverse Multi-Future 3s Prediction

Visualizations

Qualitative Comparisons

Khurana et al, "Point Cloud Forecasting as a Proxy for 4D Occupancy Forecasting", 2023.

Qualitative Comparisons

Khurana et al, "Point Cloud Forecasting as a Proxy for 4D Occupancy Forecasting", 2023.

Evaluating Counterfactual Actions

Counterfactual action: the ego vehicle brakes.

World model prediction: the vehicle behind will also brake to avoid collision.

Evaluating Counterfactual Actions

Current

Ground Truth

Prediction

Counterfactual

Conclusion

- Learning unsupervised world models is a promising way to build foundation models for robotics
- We propose a highly effective recipe for learning world models: **Tokenize Everything** + Discrete Diffusion + Spatio-Temporal Transformer
- When applied to the point cloud forecasting task in autonomous driving, our method achieves SOTA results
- Remains an open question on how such a world model can directly improve the decision making capabilities of robotic agents

