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Overview

e Can language pre-training lead to special performance gains
in offline RL?
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Overview

e Can language pre-training lead to special performance gains
in offline RL?

o  “Can Wikipedia Help Offline Reinforcement
Learning?” (Reid et al., 2022) claimed that it can.
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Overview

e Can language pre-training lead to special performance gains
in offline RL?

‘The quick brown fox jumps over the | lazy

o  “Can Wikipedia Help Offline Reinforcement
Learning?” (Reid et al., 2022) claimed that it can. Causal Language Model Bretraining
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Overview

e Can language pre-training lead to special performance gains‘ P e e

A ) fox jumps over the lazy
in offline RL? An
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© “Can Wlklpedla' Help Offline Reln:forcement_ o Decision Transformer Offline Finetuning
Learning?” (Reid et al., 2022) claimed that it can. Causal Language Model Pretraining

R1 S1 A1 ...... Rn  Sn An

<s> | The quick brown fox jumps over the [

v

G ok
e
Tow O
Szl RL Datasets

WikiText-103 Dataset

wrbbgiethgagrid cals
ICLR (?l NEW YORK UNIVERSITY NYY B }‘f,(: SHANGHAI

[ANYU ABUDHABI | L i PO A 4 X 2

International Conference On
Learning Representations




Overview

e Can language pre-training lead to special performance gains
in offline RL?

o  “Can Wikipedia Help Offline Reinforcement
Learning?” (Reid et al., 2022) claimed that it can.

e How about simpler data without involving language?
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Overview

e Can language pre-training lead to special performance gains
in offline RL?

o  “Can Wikipedia Help Offline Reinforcement
Learning?” (Reid et al., 2022) claimed that it can.

e How about simpler data without involving language?

e We show that pre-training with simple synthetic data can
provide even better performance.
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Overview

e Can language pre-training lead to special performance gains
in offline RL?
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o  “Can Wikipedia Help Offline Reinforcement ‘
Learning?” (Reid et al., 2022) claimed that it can. Decision Transformer Offline Finetuning ‘

Causal Language Model Pretraining

e How about simpler data without involving language?

R1 s1 A1 ...... Rn  Sn An
e We show that pre-training with simple synthetic data can T .
provide even better performance. ‘ §>
o Randomized IID data/Markov Chain data; ‘ C
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Overview

e Can language pre-training lead to special performance gains
in offline RL?
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o  “Can Wikipedia Help Offline Reinforcement ‘
Learning?” (Reid et al., 2022) claimed that it can. Decision Transformer Offline Finetuning ‘

Causal Language Model Pretraining

e How about simpler data without involving language?
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e \We show that pre-training with simple synthetic data can ‘ .
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Overview

Can language pre-training lead to special performance gains

in offline RL? -

S3 S2 $1 S2 S2 S3 S2

s

o  “Can Wikipedia Help Offline Reinforcement
Learning?” (Reid et al., 2022) claimed that it can.

How about simpler data without involving language?

We show that pre-training with simple synthetic data can
provide even better performance.

o Randomized IID data/Markov Chain data;
o  Pre-training with smaller number of steps;

o  Applicable to both Transformer and MLP
architectures.
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Overview

e Can language pre-training lead to special performance gains

in offline RL? -

S3 S2 $1 S2 S2 S3 S2

s

o  “Can Wikipedia Help Offline Reinforcement
Learning?” (Reid et al., 2022) claimed that it can.

e How about simpler data without involving language?

e We show that pre-training with simple synthetic data can
provide even better performance.

o Randomized IID data/Markov Chain data;
o  Pre-training with smaller number of steps;

o  Applicable to both Transformer and MLP
architectures.

e  We therefore conclude that:
o Language is not essential for improved performance;

o  Synthetic pre-training is easy and effective in
improving offline RL.
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Causal Language Model Pretraining
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Background: Pre-training

e Next State Prediction
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Background: Pre-training

e Next State Prediction
o  Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).
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Background: Pre-training

e Next State Prediction

o  Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).
o Given the previous states, predict the next state (Markov Chain with discrete integer states).

o L(xg,x1,...,27;0) = —log Ps(xq, T1,...,27) = —X1_, log Ps(x4|z0, T1,...,Ts—1).
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Background: Pre-training

e Next State Prediction

Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).

Given the previous states, predict the next state (Markov Chain with discrete integer states).
E(Zg, B1 o , Bri0) = — Joog Bylitg, Brye - - 1) = —Zle log Py(z¢|xo, 21, Tt—1)-

Ideal for Decision Transformer

o O O O
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Background: Pre-training

e Next State Prediction

o  Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).

o Given the previous states, predict the next state (Markov Chain with discrete integer states).
o L(xg,x1,...,27;0) = —log Ps(xq, T1,...,27) = —X1_, log Ps(x4|z0, T1,...,Ts—1).

o ldeal for Decision Transformer

e Forward Dynamics Prediction (Janner et al., 2019, He et al., 2022)
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Background: Pre-training

e Next State Prediction
o  Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).
o Given the previous states, predict the next state (Markov Chain with discrete integer states).
o L(xg,x1,...,27;0) = —log Ps(xq, T1,...,27) = —X1_, log Ps(x4|z0, T1,...,Ts—1).
o ldeal for Decision Transformer
e Forward Dynamics Prediction (Janner et al., 2019, He et al., 2022)

o Predicting the next state s’ given the current state s and action a (Markov Decision Process
data).
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Background: Pre-training

e Next State Prediction
o  Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).
o Given the previous states, predict the next state (Markov Chain with discrete integer states).
o L(xg,x1,...,27;0) = —log Ps(xq, T1,...,27) = —X1_, log Ps(x4|z0, T1,...,Ts—1).
o ldeal for Decision Transformer
e Forward Dynamics Prediction (Janner et al., 2019, He et al., 2022)
o Predicting the next state s’ given the current state s and action a (Markov Decision Process
data).
o Minimize the MSE loss between s’ and the predicted next state §”: (s’ - §')2.
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Background: Pre-training

e Next State Prediction
o  Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).
o Given the previous states, predict the next state (Markov Chain with discrete integer states).
o L(xg,x1,...,27;0) = —log Ps(xq, T1,...,27) = —X1_, log Ps(x4|z0, T1,...,Ts—1).
o ldeal for Decision Transformer
e Forward Dynamics Prediction (Janner et al., 2019, He et al., 2022)
o Predicting the next state s’ given the current state s and action a (Markov Decision Process
data).
o Minimize the MSE loss between s’ and the predicted next state §”: (s’ - §')2.
o l|deal for CQL
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Synthetic Data Generation: Markov Chain Generator

e Markov Chain Generator Setup
o Define State Space (humber of states S)
o Initial State Distribution P, over the state space
o  Number of steps to condition N

o Transitional Distribution Matrices P for 1...N
e [0 generate distributions:
o For each previous state(s), draw S IID values z,

o  Apply softmax given temperature T: _ez(=/T)
Zj exp(z;/T)

o Distributions are fixed when generating data
e Hyper-parameters

o N-step conditioning

o S number of states

o T temperature
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Synthetic Data Generation: Markov Chain Generator
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Synthetic Data Generation: Markov Chain Generator

s1  s2 s3 s1  s2 s3
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Randomized IID 1-step MC
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Synthetic Data Generation: Markov Chain Generator
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Synthetic Data Generation: Markov Decision Data Generator

e Similar to 1-step MC data, generate MDP data in the following way:

(@)

o O O O

Apart from a discrete state space, define a discrete action space A

Define a policy distribution 1T over A given a state

Define Transition Matrices over the state space given previous state s and action a

To obtain distributions, draw IID values and pass through softmax as before

To generate states/actions, map the discrete states/actions to multi-dimensional vectors
(dimensions should agree with downstream task)
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Experiments: Decision Transformer

e Benchmark: D4RL datasets

o  Four MuJoCo environments (HalfCheetah, Hopper, Walker, Ant)
o Three datasets for each environment (Medium, Medium-Expert, Medium-Replay)
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Experiments: Decision Transformer

e Benchmark: D4RL datasets

o  Four MuJoCo environments (HalfCheetah, Hopper, Walker, Ant)
o Three datasets for each environment (Medium, Medium-Expert, Medium-Replay)

e Training Hyper-parameters
o  We follow the settings from DT (Chen et al., 2021) and DT+Wiki (Reid et al., 2022)
o Pre-training: Instead of 80K steps of language pre-training as in DT+Wiki, we pre-train with
synthetic data with only 20K steps
o [Evaluation: Evaluating every 5K steps, we average returns over the last 20K steps out of a
total of 100K fine-tuning steps
o  We run each experiment over 20 seeds
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Experiments: Decision Transformer

e Benchmark: D4RL datasets

o  Four MuJoCo environments (HalfCheetah, Hopper, Walker, Ant)
o Three datasets for each environment (Medium, Medium-Expert, Medium-Replay)

e Training Hyper-parameters
o  We follow the settings from DT (Chen et al., 2021) and DT+Wiki (Reid et al., 2022)
o Pre-training: Instead of 80K steps of language pre-training as in DT+Wiki, we pre-train with
synthetic data with only 20K steps
o [Evaluation: Evaluating every 5K steps, we average returns over the last 20K steps out of a
total of 100K fine-tuning steps
o  We run each experiment over 20 seeds

e MC Data

o By default, data are generated with 100 states, 1-step MC with a temperature of 1
o The size of synthetic data are made to be similar to Wikitext-103 (Merity et al., 2016)
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Experiments: Decision Transformer

e Main Results

o The default synthetic data setting gives most _Average Last Four DT DT+Wiki  DT+Synthetic
) halfcheetah-medium-expert 44.9 3.4 439427 495499
consistent results hopper-medium-expert ~ 81.0+11.8 94.0+89  99.6+ 6.5
o + i walker2d-medium-expert  105.0 £ 3.5 102.7 £ 64 1074 £0.8
Our approach (DT Synthetlc) outperforms ant-medium-expert 107.0 8.7 113.9 £ 10.5 117.9 +8.7
DT by 10% halfcheetah-medium-replay 37.5+ 1.3 39.1+16 393+ 1.1
. o hopper-medium-replay 46.7 £10.6 5144+ 13.6 618+ 13.9

1)

o DT+S3ynthetic outperforms DT+Wiki by 5% walker2d-medium-replay ~ 49.2 4+ 10.1 552477 56.8 4 5.1
o Evidence that Comp|ex token dependencies ant-medium-replay 809+39 78.1+£53 884427
. . . halfcheetah-medium 4244+05 426+02 425402
and semantic meaning of the language is not  hopper-medium 582432 584+33 602421
. walker2d-medium 704 +£29 70.8+3.0 71.5 + 4.1
essential ant-medium 89.0 +47 885+42 878442
Average over datasets 67.7+£54 699+56 73.61+49
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Experiments: Decision Transformer

e Computational Efficiency
o Pre-training: DT+Synthetic consumes 3% of the
computation resources (Time x GPUs) needed for
DT+Wiki
o Fine-tuning: DT+Synthetic takes 67% of the —
computation time needed for DT+Wiki under the /" —— DT+Synthetic
same hardware setting (due to no auxiliary loss) S » 6 o 1 o o

Q. Q. Q. Q- l». l\. I»'
Total Number of Updates 169

o un

/

f— ot

o

Normalized Score
()] ()] ~ ~
(9]

9]
(%))

wrbbgiethgagrid cals
ICLR (?l NEW YORK UNIVERSITY NYU B SHANGHAI

ENYuU |ABUDHABI | L i 20N A £ X %

International Conference On
Learning Representations




Experiments: Decision Transformer

e Computational Efficiency
o Pre-training: DT+Synthetic consumes 3% of the
computation resources (Time x GPUs) needed for
DT+Wiki
o Fine-tuning: DT+Synthetic takes 67% of the
computation time needed for DT+Wiki under the

NN
o un

(*)}
o

Normalized Score
()]
(9]

, DT+Wiki
' —— DT+Synthetic

same hardware setting (due to no auxiliary loss) S » © o 1 v o

9]
(%))

Q. Q. Q. Q- l». l\. I»'
Total Number of Updates 169

Computation Time DT DT+Wiki DT+Synthetic
halfcheetah-medium-expert 2 hrs 27 mins 3 hrs 50 mins 2 hrs 32 mins
hopper-medium-expert 1 hrs 55 mins 3 hrs 25 mins  2hrs 11 mins
walker2d-medium-expert 2hrs 17mins 3 hrs 45 mins 2 hrs 18 mins
ant-medium-expert 2hrs 8 mins 3 hrs 52 mins 2 hrs 46 mins
Average over datasets 2hrs 12 mins 3 hrs 43 mins 2 hrs 27 mins
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Experiments: Decision Transformer

e Ablations
o Longer token dependencies does not give better

performance

Average Last Four DT 1-MC 2-MC 5-MC
halfcheetah-medium-expert 44.9 =34 495+99 443 +40 438+3.0
hopper-medium-expert 81.0 £ 11.8 99.6 =65 991+65 982457
walker2d-medium-expert ~ 105.0 + 3.5 107.4 £ 0.8 105.7 £ 3.1 1059 £3.1
ant-medium-expert 107.0 £ 8.7 1179 £8.7 122.2 £ 5.3 1089 + 11.7
halfcheetah-medium-replay 37.5+ 13 393+ 1.1 395+ 13 394409
hopper-medium-replay 46.7 £ 10.6 61.8 £ 139 59.8 +11.0 60.1 - 114
walker2d-medium-replay ~ 49.2 £ 10.1 56.8 £5.1 593 +39 588 +5.38
ant-medium-replay 809+39 884+27 8.9+40 86.1+44
halfcheetah-medium 424+05 425+02 426+03 425403
hopper-medium 582+32 602+21 593433 596428
walker2d-medium 704 +£29 715441 70.7+42 70.1+40
ant-medium 89.0 47 878442 87.0+37 88.6+t4.1
Average over datasets 67.7+54 73.6L£49 73.0+42 718148
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Experiments: Decision Transformer

e Ablations
o Longer token dependencies does not give better
performance
o Alarger state space (similar to LM vocabularies)
does not give better performance

Average Last Four DT S10 S100 S1000 $10000 S100000

halfcheetah-medium-expert 44.9 +34 434 +26 495+99 454+45 440+£22 43.6+£27
hopper-medium-expert 81.0 £ 11.8 988 +£84 99.6+65 1022+57 998+6.2 994+6.7
walker2d-medium-expert ~ 105.0 £ 3.5 1054 +4.1 1074 £ 0.8 107.1 £ 1.9 1059 4+ 3.1 1039 +5.0
ant-medium-expert 107.0 £ 8.7 114.6 9.7 1179 £ 8.7 1187 £ 6.7 116.0 = 10.5 123.2 £ 6.3
halfcheetah-medium-replay 37.5+ 1.3 40009 393+ 1.1 40.0 08 39.6+12 399+09
hopper-medium-replay 46.7 + 10.6 58.6 £13.2 61.8 & 13.9 65.0 £ 10.8 62.0+:9.6 53.3 £ 12.6
walker2d-medium-replay ~ 49.2 £ 10.1 52.6 & 10.1 568 5.1 595+62 60.1+5.6 588 +85

ant-medium-replay 809+39 87.1+44 884+27 878+33 845+48 868136
halfcheetah-medium 4244+05 425+04 425402 424+03 425+03 424+04
hopper-medium 582+32 596+30 602+21 604427 587438 573433
walker2d-medium 704 £29 7154+38 715+41 728+22 724436 724427
ant-medium 89.0 £47 889+37 878+42 87.1+28 888+42 883132
Average over datasets 67.7+£54 719+53 73.6+£49 740140 729+46 724447
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Experiments: Decision Transformer

Ablations
o Longer token dependencies does not give better
performance

o Alarger state space (similar to LM vocabularies)
does not give better performance

o Even randomized IID (infinite temperature) data
provides better performance than DT+Wiki

Average Last Four DT 7=0.01 7=0.1 =1 =10 =100

IID uniform

halfcheetah-medium-expert 44.9 +34 46.6 +£54 52.6 £ 119 495499 433+£32 442433 445+40
hopper-medium-expert 81.0+ 11.8 954 +£81 952+£92 99.6+65 999+63 98755 987+7.1
walker2d-medium-expert  105.0 & 3.5 106.4 2.6 106.6 +2.9 107.4 £ 0.8 1063 +3.6 1051 +43 103.2+42
ant-medium-expert 107.0 £ 8.7 1149 £ 6.9 121.7 £5.5 117.9 £8.7 118.6 £ 10.1 108.2 £9.6 1058 £ 11.1
halfcheetah-medium-replay 375+ 1.3 395+ 1.1 402+09 393+1.1 397+£08 401+05 393+09
hopper-medium-replay 46.7 £10.6 52.5 £ 12.0 528 + 144 61.8 £ 139 602+94 60.8+93 61.6+ 108
walker2d-medium-replay ~ 49.2 +10.1 573+ 6.6 570+ 6.6 568 +51 551+£86 567+63 572+52
ant-medium-replay 809+39 867435 882437 884427 858+36 872+46 86.1+3.6
halfcheetah-medium 424+05 424+03 425+02 425+02 425+03 42.6+03 426+02
hopper-medium 582+32 59.1+34 594435 602+21 579431 594437 59.1+32
walker2d-medium 704+29 71.74+28 715431 715+41 707+36 TL7+41 69.1+54
ant-medium 89.0 47 880+35 892+30 878+42 884+40 884146 88.1+49
Average over datasets 67.7+54 71.7+47 731+54 73.6+49 724147 7T19+£47 713+5.1
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Experiments: Decision Transformer

e Ablations

o Longer token dependencies does not give better
performance

o Alarger state space (similar to LM vocabularies)
does not give better performance

o Even randomized IID (infinite temperature) data
provides better performance than DT+Wiki

o DT+Synthetic gives robust results over different
number of states, MC steps, and temperature

o Further evidence that complex token dependencies
from language is not essential
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Experiments: CQL

e S~ A ]
_ v 80
e Main results S 70
. . N 60 -
o Pre-train for 100K steps with MDP data T
. N 201
o  Fine-tune for 1M steps .
. c —— CQL
o S stands for number of states/actions < 301 C8L+MDP
. . . 2
20
o  Temperature for all distributions are 1 —  CQL+IID
. . 101
o Results consistent with DT - - - - - -
0.0 0.2 0.4 0.6 0.8 1.0
o CQL pre-training only takes 5 mins with one GPU! Number of Updates
Average Last Four CQL S=10 S=100 S=1.000 S=10.000  S=100.000
halfcheetah-medium-expert 359 52 529+ 58 63.1+%£72 662+73 65.6+9.1 637 +L68
hopper-medium-expert 593 +214 904+ 155 90.2 £ 13.2 88.1 = 10.6 89.8 + 13.0 849 £ 20.2
walker2d-medium-expert  107.8 £+ 3.8 109.8 + 0.3 109.8 + 0.3 110.1 = 04 110.1 £ 04 110.1 + 0.3
ant-medium-expert 1188 £52 1240 £ 5.1 126.0 £ 54 1314 £ 4.1 1284 £4.7 1292 £ 43
halfcheetah-medium-replay 46.6 =03 465+ 03 468 £ 04 465+ 03 46.6 +02 465+ 03
hopper-medium-replay 942322 963+29 953432 969+19 980+ 14 971 +20
walker2d-medium-replay ~ 80.0 = 4.1 839+30 839+24 838+16 813+34 829+19
ant-medium-replay 96.7 £ 3.8 1017 £4.0 102.0 £ 3.5 1023 £ 24 101.9 £ 2.6 100.6 £+ 3.8
halfcheetah-medium 483 £ 02 48,6+ 02 487 +02 487 +02 48.7+ 02 48.6 + 02
hopper-medium 68.2 40 646426 669441 662+28 655+33 669 +33
walker2d-medium 821+ 18 828423 834+ 1.1 837106 832+ 1.1 835+13
ant-medium 98.7 +4.0 1024 +36 103.2+33 1033+ 38 1034 +29 101.2 +34
I c R Average over datasets T80 47 837+38 849+37 85.6+30 852+35 846140
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Conclusion

e \We propose a simple yet effective synthetic pre-training scheme for both DT
and CQL

e A smaller state space/simpler token dependency challenges the previous
view that language pre-training can provide unique benefits for offline RL

e Qur results are robust over various hyper-parameters (state/action space
size, peakedness of distributions, history dependence)

e QOur approach is extremely efficient (DT+Synthetic uses 3% the resources
needed for DT+Wiki, faster fine-tuning; CQL pre-training only takes 5 mins!)
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Thank you!
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