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● Can language pre-training lead to special performance gains 
in offline RL? 

○ “Can Wikipedia Help Offline Reinforcement 
Learning?” (Reid et al., 2022) claimed that it can.

● How about simpler data without involving language? 

● We show that pre-training with simple synthetic data can 
provide even better performance. 

○ Randomized IID data/Markov Chain data;

○ Pre-training with smaller number of steps;

○ Applicable to both Transformer and MLP 
architectures.

● We therefore conclude that:

○ Language is not essential for improved performance;

○ Synthetic pre-training is easy and effective in 
improving offline RL.
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○ Predicting the next state s’ given the current state s and action a (Markov Decision Process 

data).
○ Minimize the MSE loss between s’ and the predicted next state ŝ’: (s’ - ŝ’)2.
○ Ideal for CQL



Synthetic Data Generation: Markov Chain Generator

● Markov Chain Generator Setup
○ Define State Space (number of states S)
○ Initial State Distribution P0 over the state space
○ Number of steps to condition N
○ Transitional Distribution Matrices PN for 1…N

● To generate distributions:
○ For each previous state(s), draw S IID values z1…S

○ Apply softmax given temperature T:

○ Distributions are fixed when generating data
● Hyper-parameters

○ N-step conditioning
○ S number of states
○ T temperature



Synthetic Data Generation: Markov Chain Generator



Synthetic Data Generation: Markov Chain Generator



Synthetic Data Generation: Markov Chain Generator



Synthetic Data Generation: Markov Decision Data Generator

● Similar to 1-step MC data, generate MDP data in the following way:
○ Apart from a discrete state space, define a discrete action space A
○ Define a policy distribution π over A given a state
○ Define Transition Matrices over the state space given previous state s and action a
○ To obtain distributions, draw IID values and pass through softmax as before
○ To generate states/actions, map the discrete states/actions to multi-dimensional vectors 

(dimensions should agree with downstream task)
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○ Pre-training: Instead of 80K steps of language pre-training as in DT+Wiki, we pre-train with 
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○ Evaluation: Evaluating every 5K steps, we average returns over the last 20K steps out of a 
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● MC Data
○ By default, data are generated with 100 states, 1-step MC with a temperature of 1
○ The size of synthetic data are made to be similar to Wikitext-103 (Merity et al., 2016)



Experiments: Decision Transformer

● Main Results
○ The default synthetic data setting gives most 

consistent results
○ Our approach (DT+Synthetic) outperforms 

DT by 10%
○ DT+Synthetic outperforms DT+Wiki by 5%
○ Evidence that complex token dependencies 

and semantic meaning of the language is not 
essential
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Experiments: Decision Transformer

● Ablations 
○ Longer token dependencies does not give better 

performance
○ A larger state space (similar to LM vocabularies) 

does not give better performance 
○ Even randomized IID (infinite temperature) data 

provides better performance than DT+Wiki
○ DT+Synthetic gives robust results over different 

number of states, MC steps, and temperature
○ Further evidence that complex token dependencies 

from language is not essential



Experiments: CQL

● Main results
○ Pre-train for 100K steps with MDP data
○ Fine-tune for 1M steps
○ S stands for number of states/actions
○ Temperature for all distributions are 1
○ Results consistent with DT
○ CQL pre-training only takes 5 mins with one GPU!



Conclusion

● We propose a simple yet effective synthetic pre-training scheme for both DT 
and CQL

● A smaller state space/simpler token dependency challenges the previous 
view that language pre-training can provide unique benefits for offline RL

● Our results are robust over various hyper-parameters (state/action space 
size, peakedness of distributions, history dependence)

● Our approach is extremely efficient (DT+Synthetic uses 3% the resources 
needed for DT+Wiki, faster fine-tuning; CQL pre-training only takes 5 mins!)



Thank you!
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