Pre-training with Synthetic Data Helps Offline Reinforcement Learning

Zecheng Wang¹, Che Wang^{2,4}, Zixuan Dong^{3,4}, and Keith Ross¹ ¹New York University Abu Dhabi, ²New York University Shanghai ³SFSC of AI and DL, NYU Shanghai, ⁴New York University

NYU جامعة نيويورك ابوظي NYU ABU DHABI 上海

• Can language pre-training lead to **special** performance gains in offline RL?

- Can language pre-training lead to **special** performance gains in offline RL?
 - "Can Wikipedia Help Offline Reinforcement Learning?" (Reid et al., 2022) claimed that **it can**.

- Can language pre-training lead to **special** performance gains The quick brown fox jumps over the lazy in offline RL?
 - "Can Wikipedia Help Offline Reinforcement Learning?" (Reid et al., 2022) claimed that **it can**.

- Can language pre-training lead to **special** performance gains The quick brown fox jumps over the lazy in offline RL?
 - "Can Wikipedia Help Offline Reinforcement Learning?" (Reid et al., 2022) claimed that **it can**.

- Can language pre-training lead to **special** performance gains in offline RL?
 - "Can Wikipedia Help Offline Reinforcement Learning?" (Reid et al., 2022) claimed that **it can**.
- How about simpler data without involving language?

- Can language pre-training lead to **special** performance gains in offline RL?
 - "Can Wikipedia Help Offline Reinforcement Learning?" (Reid et al., 2022) claimed that **it can**.
- How about simpler data without involving language?
- We show that pre-training with simple synthetic data can provide even better performance.

- Can language pre-training lead to **special** performance gains in offline RL?
 - "Can Wikipedia Help Offline Reinforcement Learning?" (Reid et al., 2022) claimed that **it can**.
- How about simpler data without involving language?
- We show that pre-training with simple synthetic data can provide even better performance.
 - Randomized IID data/Markov Chain data;

NYU جامعـة نيويورك ابوظـبي

🕐 NYU ABU DHABI 上

SHA

- Can language pre-training lead to special performance gains in offline RL?
 - "Can Wikipedia Help Offline Reinforcement Learning?" (Reid et al., 2022) claimed that **it can**.
- How about simpler data without involving language?
- We show that pre-training with simple synthetic data can provide even better performance.
 - Randomized IID data/Markov Chain data;
 - Pre-training with smaller number of steps;

- Can language pre-training lead to special performance gains in offline RL?
 - "Can Wikipedia Help Offline Reinforcement Learning?" (Reid et al., 2022) claimed that **it can**.
- How about simpler data without involving language?
- We show that pre-training with simple synthetic data can provide even better performance.
 - Randomized IID data/Markov Chain data;
 - Pre-training with smaller number of steps;
 - Applicable to both Transformer and MLP architectures.

NYU جامعـة نيويورك ابوظـبي

🥐 NYU ABU DHABI 上

SHA

- Can language pre-training lead to special performance gains in offline RL?
 - "Can Wikipedia Help Offline Reinforcement Learning?" (Reid et al., 2022) claimed that **it can**.
- How about simpler data without involving language?
- We show that pre-training with simple synthetic data can provide even better performance.
 - Randomized IID data/Markov Chain data;
 - Pre-training with smaller number of steps;
 - Applicable to both Transformer and MLP architectures.
- We therefore conclude that:
 - Language is not essential for improved performance;
 - Synthetic pre-training is **easy and effective** in improving offline RL.

| NYU| جامعـة نيويورك أبوظـبي

🥐 NYU ABU DHABI 上

- Next State Prediction
 - Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).

Next State Prediction

- Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).
- Given the previous states, predict the next state (Markov Chain with **discrete integer states**).
- $\circ \quad \mathcal{L}(x_0, x_1, \dots, x_T; \theta) = -\log P_{\theta}(x_0, x_1, \dots, x_T) = -\sum_{t=1}^T \log P_{\theta}(x_t | x_0, x_1, \dots, x_{t-1}).$

NYU جامعـة نيويورك أبوظبي NYU ABU DHABI 上海

Next State Prediction

- Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).
- Given the previous states, predict the next state (Markov Chain with **discrete integer states**).
- $\circ \quad \mathcal{L}(x_0, x_1, \dots, x_T; \theta) = -\log P_{\theta}(x_0, x_1, \dots, x_T) = -\sum_{t=1}^T \log P_{\theta}(x_t | x_0, x_1, \dots, x_{t-1}).$
- Ideal for Decision Transformer

NYU جامعة نيويورك أبوظي NYU ABU DHABI 上海

- Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).
- Given the previous states, predict the next state (Markov Chain with **discrete integer states**).
- $\circ \quad \mathcal{L}(x_0, x_1, \dots, x_T; \theta) = -\log P_{\theta}(x_0, x_1, \dots, x_T) = -\sum_{t=1}^T \log P_{\theta}(x_t | x_0, x_1, \dots, x_{t-1}).$
- Ideal for Decision Transformer
- Forward Dynamics Prediction (Janner et al., 2019, He et al., 2022)

- Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).
- Given the previous states, predict the next state (Markov Chain with **discrete integer states**).
- $\mathcal{L}(x_0, x_1, \dots, x_T; \theta) = -\log P_{\theta}(x_0, x_1, \dots, x_T) = -\sum_{t=1}^T \log P_{\theta}(x_t | x_0, x_1, \dots, x_{t-1}).$
- Ideal for Decision Transformer
- Forward Dynamics Prediction (Janner et al., 2019, He et al., 2022)
 - Predicting the next state s' given the current state s and action a (Markov Decision Process data).

- Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).
- Given the previous states, predict the next state (Markov Chain with **discrete integer states**).
- $\circ \quad \mathcal{L}(x_0, x_1, \dots, x_T; \theta) = -\log P_{\theta}(x_0, x_1, \dots, x_T) = -\sum_{t=1}^T \log P_{\theta}(x_t | x_0, x_1, \dots, x_{t-1}).$
- Ideal for Decision Transformer
- Forward Dynamics Prediction (Janner et al., 2019, He et al., 2022)
 - Predicting the next state s' given the current state s and action a (Markov Decision Process data).
 - Minimize the MSE loss between s' and the predicted next state \hat{s}' : $(s' \hat{s}')^2$.

- Similar to autoregressive language modeling (Brown et al., 2020) (tokens as states).
- Given the previous states, predict the next state (Markov Chain with **discrete integer states**).
- $\circ \quad \mathcal{L}(x_0, x_1, \dots, x_T; \theta) = -\log P_{\theta}(x_0, x_1, \dots, x_T) = -\sum_{t=1}^T \log P_{\theta}(x_t | x_0, x_1, \dots, x_{t-1}).$
- Ideal for Decision Transformer
- Forward Dynamics Prediction (Janner et al., 2019, He et al., 2022)
 - Predicting the next state s' given the current state s and action a (Markov Decision Process data).
 - Minimize the MSE loss between s' and the predicted next state \hat{s}' : $(s' \hat{s}')^2$.
 - Ideal for CQL

- Markov Chain Generator Setup
 - Define State Space (number of states S) Ο
 - Initial State Distribution P_0 over the state space Number of steps to condition N 0
 - Ο
 - Transitional Distribution Matrices **P**_N for 1...N Ο
- To generate distributions:
 - For each previous state(s), draw **S** IID values z_1
 - Apply softmax given temperature **T**: $\frac{exp(z_i/T)}{\sum_i exp(z_j/T)}$ Ο
 - Distributions are fixed when generating data Ο
- Hyper-parameters
 - N-step conditioning Ο
 - S number of states \bigcirc
 - **T** temperature Ο

Randomized IID

Randomized IID

1-step MC

Synthetic Data Generation: Markov Decision Data Generator

- Similar to 1-step MC data, generate MDP data in the following way:
 - Apart from a discrete state space, define a discrete action space A
 - \circ Define a policy distribution π over A given a state
 - Define Transition Matrices over the state space given previous state s **and action a**
 - To obtain distributions, draw IID values and pass through softmax as before
 - To generate states/actions, map the discrete states/actions to multi-dimensional vectors (dimensions should agree with downstream task)

• Benchmark: D4RL datasets

- Four MuJoCo environments (HalfCheetah, Hopper, Walker, Ant)
- Three datasets for each environment (Medium, Medium-Expert, Medium-Replay)

• Benchmark: D4RL datasets

- Four MuJoCo environments (HalfCheetah, Hopper, Walker, Ant)
- Three datasets for each environment (Medium, Medium-Expert, Medium-Replay)

• Training Hyper-parameters

- We follow the settings from DT (Chen et al., 2021) and DT+Wiki (Reid et al., 2022)
- **Pre-training:** Instead of 80K steps of language pre-training as in DT+Wiki, we pre-train with synthetic data with only 20K steps
- **Evaluation:** Evaluating every 5K steps, we average returns over the **last 20K** steps out of a total of 100K fine-tuning steps
- We run each experiment over **20** seeds

• Benchmark: D4RL datasets

- Four MuJoCo environments (HalfCheetah, Hopper, Walker, Ant)
- Three datasets for each environment (Medium, Medium-Expert, Medium-Replay)

• Training Hyper-parameters

- We follow the settings from DT (Chen et al., 2021) and DT+Wiki (Reid et al., 2022)
- **Pre-training:** Instead of 80K steps of language pre-training as in DT+Wiki, we pre-train with synthetic data with only 20K steps
- **Evaluation:** Evaluating every 5K steps, we average returns over the **last 20K** steps out of a total of 100K fine-tuning steps
- We run each experiment over **20** seeds
- MC Data
 - By default, data are generated with 100 states, 1-step MC with a temperature of 1
 - The size of synthetic data are made to be similar to Wikitext-103 (Merity et al., 2016)

• Main Results

- The default synthetic data setting gives most consistent results
- Our approach (DT+Synthetic) outperforms
 DT by **10%**
- DT+Synthetic outperforms DT+Wiki by **5%**
- Evidence that complex token dependencies and semantic meaning of the language is not essential

Average Last Four	DT	DT+Wiki	DT+Synthetic
halfcheetah-medium-expert	44.9 ± 3.4	43.9 ± 2.7	49.5 ± 9.9
hopper-medium-expert	81.0 ± 11.8	94.0 ± 8.9	99.6 ± 6.5
walker2d-medium-expert	105.0 ± 3.5	102.7 ± 6.4	107.4 ± 0.8
ant-medium-expert	107.0 ± 8.7	113.9 ± 10.5	117.9 ± 8.7
halfcheetah-medium-replay	37.5 ± 1.3	39.1 ± 1.6	39.3 ± 1.1
hopper-medium-replay	46.7 ± 10.6	51.4 ± 13.6	61.8 ± 13.9
walker2d-medium-replay	49.2 ± 10.1	55.2 ± 7.7	56.8 ± 5.1
ant-medium-replay	80.9 ± 3.9	78.1 ± 5.3	88.4 ± 2.7
halfcheetah-medium	42.4 ± 0.5	42.6 ± 0.2	42.5 ± 0.2
hopper-medium	58.2 ± 3.2	58.4 ± 3.3	60.2 ± 2.1
walker2d-medium	70.4 ± 2.9	70.8 ± 3.0	71.5 ± 4.1
ant-medium	89.0 ± 4.7	88.5 ± 4.2	87.8 ± 4.2
Average over datasets	67.7 ± 5.4	69.9 ± 5.6	73.6 ± 4.9

ΝΥυ∣جامعـةن

- Computational Efficiency
 - Pre-training: DT+Synthetic consumes 3% of the computation resources (Time x GPUs) needed for DT+Wiki
 - **Fine-tuning:** DT+Synthetic takes **67%** of the computation time needed for DT+Wiki under the same hardware setting (due to no auxiliary loss)

حامعـة ن

NYU ABU DHABI

- Computational Efficiency
 - Pre-training: DT+Synthetic consumes 3% of the computation resources (Time x GPUs) needed for DT+Wiki
 - **Fine-tuning:** DT+Synthetic takes **67%** of the computation time needed for DT+Wiki under the same hardware setting (due to no auxiliary loss)

Computation Time	DT	DT+Wiki	DT+Synthetic
halfcheetah-medium-expert	2 hrs 27 mins	3 hrs 50 mins	2 hrs 32 mins
hopper-medium-expert	1 hrs 55 mins	3 hrs 25 mins	2hrs 11 mins
walker2d-medium-expert	2 hrs 17 mins	3 hrs 45 mins	2 hrs 18 mins
ant-medium-expert	2 hrs 8 mins	3 hrs 52 mins	2 hrs 46 mins
Average over datasets	2 hrs 12 mins	3 hrs 43 mins	2 hrs 27 mins

حامعةن

NYU ABU DHABI

NEW YORK UNIVERSITY

• Ablations

 Longer token dependencies **does not** give better performance

Average Last Four	DT	1-MC	2-MC	5-MC
halfcheetah-medium-expert	44.9 ± 3.4	49.5 ± 9.9	44.3 ± 4.0	43.8 ± 3.0
hopper-medium-expert	81.0 ± 11.8	99.6 ± 6.5	$\textbf{99.1} \pm 6.5$	98.2 ± 5.7
walker2d-medium-expert	105.0 ± 3.5	107.4 ± 0.8	105.7 ± 3.1	105.9 ± 3.1
ant-medium-expert	107.0 ± 8.7	117.9 ± 8.7	$\textbf{122.2} \pm 5.3$	108.9 ± 11.7
halfcheetah-medium-replay	37.5 ± 1.3	39.3 ± 1.1	39.5 ± 1.3	39.4 ± 0.9
hopper-medium-replay	46.7 ± 10.6	$\textbf{61.8} \pm 13.9$	59.8 ± 11.0	60.1 ± 11.4
walker2d-medium-replay	49.2 ± 10.1	56.8 ± 5.1	59.3 ± 3.9	58.8 \pm 5.8
ant-medium-replay	80.9 ± 3.9	88.4 ± 2.7	86.9 ± 4.0	86.1 ± 4.4
halfcheetah-medium	42.4 ± 0.5	42.5 ± 0.2	42.6 ± 0.3	42.5 ± 0.3
hopper-medium	58.2 ± 3.2	60.2 ± 2.1	59.3 ± 3.3	59.6 ± 2.8
walker2d-medium	70.4 ± 2.9	71.5 \pm 4.1	70.7 ± 4.2	70.1 ± 4.0
ant-medium	$\textbf{89.0} \pm 4.7$	87.8 ± 4.2	87.0 ± 3.7	$\textbf{88.6} \pm 4.1$
Average over datasets	67.7 ± 5.4	73.6 ± 4.9	$\textbf{73.0} \pm 4.2$	71.8 ± 4.8

Ablations

- Longer token dependencies **does not** give better Ο performance
- A larger state space (similar to LM vocabularies) Ο does not give better performance

Average Last Four	DT	S10	S100	S1000	S10000	S100000
halfcheetah-medium-expert	44.9 ± 3.4	43.4 ± 2.6	49.5 ± 9.9	45.4 ± 4.5	44.0 ± 2.2	43.6 ± 2.7
hopper-medium-expert	81.0 ± 11.8	98.8 ± 8.4	99.6 ± 6.5	$\textbf{102.2} \pm 5.7$	99.8 ± 6.2	99.4 ± 6.7
walker2d-medium-expert	105.0 ± 3.5	105.4 ± 4.1	$\textbf{107.4} \pm 0.8$	$\textbf{107.1} \pm 1.9$	105.9 ± 3.1	103.9 ± 5.0
ant-medium-expert	107.0 ± 8.7	114.6 ± 9.7	117.9 ± 8.7	118.7 ± 6.7	116.0 ± 10.5	$\textbf{123.2} \pm 6.3$
halfcheetah-medium-replay	37.5 ± 1.3	$\textbf{40.0} \pm 0.9$	39.3 ± 1.1	$\textbf{40.0} \pm 0.8$	39.6 ± 1.2	$\textbf{39.9}\pm0.9$
hopper-medium-replay	46.7 ± 10.6	58.6 ± 13.2	61.8 ± 13.9	$\textbf{65.0} \pm 10.8$	62.0 ± 9.6	53.3 ± 12.6
walker2d-medium-replay	49.2 ± 10.1	52.6 ± 10.1	56.8 ± 5.1	59.5 ± 6.2	60.1 ± 5.6	58.8 ± 8.5
ant-medium-replay	80.9 ± 3.9	87.1 ± 4.4	88.4 ± 2.7	87.8 ± 3.3	84.5 ± 4.8	86.8 ± 3.6
halfcheetah-medium	42.4 ± 0.5	42.5 ± 0.4	42.5 ± 0.2	42.4 ± 0.3	42.5 ± 0.3	42.4 ± 0.4
hopper-medium	58.2 ± 3.2	59.6 ± 3.0	60.2 ± 2.1	60.4 ± 2.7	58.7 ± 3.8	57.3 ± 3.3
walker2d-medium	70.4 ± 2.9	71.5 ± 3.8	71.5 ± 4.1	72.8 ± 2.2	72.4 ± 3.6	72.4 ± 2.7
ant-medium	$\textbf{89.0} \pm 4.7$	88.9 ± 3.7	87.8 ± 4.2	87.1 ± 2.8	$\textbf{88.8} \pm 4.2$	$\textbf{88.3} \pm 3.2$
Average over datasets	67.7 ± 5.4	71.9 ± 5.3	73.6 ± 4.9	74.0 \pm 4.0	72.9 ± 4.6	72.4 ± 4.7

ΝΥυ|جامعـة ن

• Ablations

- Longer token dependencies **does not** give better performance
- A larger state space (similar to LM vocabularies)
 does not give better performance
- Even randomized IID (infinite temperature) data

provides better performance than DT+Wiki

Average Last Four	DI	7 = 0.01	7 = 0.1	$\gamma = 1$	7 = 10	7 = 100	IID unitoriti	
halfcheetah-medium-expert	44.9 ± 3.4	46.6 ± 5.4	52.6 ± 11.9	49.5 ± 9.9	43.3 ± 3.2	44.2 ± 3.3	44.5 ± 4.0	
hopper-medium-expert	81.0 ± 11.8	95.4 ± 8.1	95.2 ± 9.2	99.6 ± 6.5	99.9 ± 6.3	98.7 ± 5.5	98.7 ± 7.1	
walker2d-medium-expert	105.0 ± 3.5	$\textbf{106.4} \pm 2.6$	$\textbf{106.6} \pm 2.9$	$\textbf{107.4} \pm 0.8$	106.3 ± 3.6	105.1 ± 4.3	103.2 ± 4.2	
ant-medium-expert	107.0 ± 8.7	114.9 ± 6.9	$\textbf{121.7} \pm 5.5$	117.9 ± 8.7	118.6 ± 10.1	108.2 ± 9.6	105.8 ± 11.1	
halfcheetah-medium-replay	37.5 ± 1.3	39.5 ± 1.1	$\textbf{40.2} \pm 0.9$	39.3 ± 1.1	39.7 ± 0.8	$\textbf{40.1} \pm 0.5$	39.3 ± 0.9	
hopper-medium-replay	46.7 ± 10.6	52.5 ± 12.0	52.8 ± 14.4	$\textbf{61.8} \pm 13.9$	60.2 ± 9.4	60.8 ± 9.3	$\textbf{61.6} \pm 10.8$	
walker2d-medium-replay	49.2 ± 10.1	$\textbf{57.3} \pm \textbf{6.6}$	$\textbf{57.0} \pm 6.6$	$\textbf{56.8} \pm 5.1$	55.1 ± 8.6	56.7 ± 6.3	57.2 \pm 5.2	
ant-medium-replay	80.9 ± 3.9	86.7 ± 3.5	88.2 ± 3.7	$\textbf{88.4} \pm 2.7$	85.8 ± 3.6	87.2 ± 4.6	86.1 ± 3.6	
halfcheetah-medium	42.4 ± 0.5	42.4 ± 0.3	42.5 ± 0.2	42.5 ± 0.2	42.5 ± 0.3	42.6 ± 0.3	42.6 ± 0.2	
hopper-medium	58.2 ± 3.2	59.1 ± 3.4	59.4 ± 3.5	60.2 ± 2.1	57.9 ± 3.1	59.4 ± 3.7	59.1 ± 3.2	
walker2d-medium	70.4 ± 2.9	71.7 \pm 2.8	71.5 \pm 3.1	71.5 \pm 4.1	70.7 ± 3.6	71.7 \pm 4.1	69.1 ± 5.4	
ant-medium	$\textbf{89.0} \pm 4.7$	88.0 ± 3.5	89.2 ± 3.0	87.8 ± 4.2	88.4 ± 4.0	88.4 ± 4.6	88.1 ± 4.9	
Average over datasets	67.7 ± 5.4	71.7 ± 4.7	73.1 ± 5.4	73.6 ± 4.9	72.4 ± 4.7	71.9 ± 4.7	71.3 ± 5.1	

- 0.1

- 10

- 100

IID

DT

NEW YORK UNIVERSITY

- 0.01

• Ablations

- Longer token dependencies **does not** give better performance
- A larger state space (similar to LM vocabularies)
 does not give better performance
- Even randomized IID (infinite temperature) data provides better performance than DT+Wiki
- DT+Synthetic gives robust results over different number of states, MC steps, and temperature
- Further evidence that complex token dependencies from language **is not essential**

Experiments: CQL

- Main results
 - Pre-train for 100K steps with MDP data Ο
 - **Fine-tune** for 1M steps Ο
 - S stands for number of states/actions \bigcirc
 - Temperature for all distributions are 1 Ο
 - Results consistent with DT 0
 - CQL pre-training only takes 5 mins with one GPU! Ο

			NU		opuates	
Average Last Four	CQL	S=10	S=100	S=1,000	S=10,000	S=100,000
halfcheetah-medium-expert	35.9 ± 5.2	52.9 ± 5.8	63.1 ± 7.2	66.2 ± 7.3	65.6 ± 9.1	63.7 ± 6.8
hopper-medium-expert	59.3 ± 21.4	$\textbf{90.4} \pm 15.5$	$\textbf{90.2} \pm 13.2$	88.1 ± 10.6	89.8 ± 13.0	84.9 ± 20.2
walker2d-medium-expert	107.8 ± 3.8	$\textbf{109.8} \pm 0.3$	$\textbf{109.8} \pm 0.3$	$\textbf{110.1} \pm 0.4$	$\textbf{110.1} \pm 0.4$	110.1 ± 0.3
ant-medium-expert	118.8 ± 5.2	124.0 ± 5.1	126.0 ± 5.4	$\textbf{131.4} \pm \textbf{4.1}$	128.4 ± 4.7	129.2 ± 4.3
halfcheetah-medium-replay	$\textbf{46.6} \pm 0.3$	46.5 ± 0.3	$\textbf{46.8} \pm 0.4$	$\textbf{46.5} \pm 0.3$	$\textbf{46.6} \pm 0.2$	46.5 ± 0.3
hopper-medium-replay	94.2 ± 2.2	96.3 ± 2.9	95.3 ± 3.2	96.9 ± 1.9	$\textbf{98.0} \pm 1.4$	97.1 ± 2.0
walker2d-medium-replay	80.0 ± 4.1	83.9 ± 3.0	83.9 ± 2.4	83.8 ± 1.6	81.3 ± 3.4	82.9 ± 1.9
ant-medium-replay	96.7 ± 3.8	$\textbf{101.7} \pm 4.0$	$\textbf{102.0} \pm 3.5$	$\textbf{102.3} \pm 2.4$	$\textbf{101.9} \pm 2.6$	100.6 ± 3.8
halfcheetah-medium	$\textbf{48.3}\pm0.2$	48.6 ± 0.2	48.7 ± 0.2	48.7 ± 0.2	48.7 ± 0.2	48.6 ± 0.2
hopper-medium	$\textbf{68.2} \pm 4.0$	64.6 ± 2.6	66.9 ± 4.1	66.2 ± 2.8	65.5 ± 3.3	66.9 ± 3.3
walker2d-medium	82.1 ± 1.8	82.8 ± 2.3	83.4 ± 1.1	83.7 ± 0.6	83.2 ± 1.1	83.5 ± 1.3
ant-medium	98.7 ± 4.0	102.4 ± 3.6	$\textbf{103.2} \pm \textbf{3.3}$	$\textbf{103.3} \pm \textbf{3.8}$	$\textbf{103.4} \pm 2.9$	101.2 ± 3.4
Average over datasets	78.0 ± 4.7	83.7 ± 3.8	84.9 ± 3.7	85.6 ± 3.0	85.2 ± 3.5	84.6 ± 4.0
NEW YORK UN	IVERSIT	ابوظـي NYU 🌱	ة نيويورك J ABU Dł	אן _{בומש} אוא אוא און און און און און און און און	UUCES 每)》《	HANGHA 田约大学

0.0

0.2

0.4

0.6

Number of Undated

90 80

70 60

50

40

30

20

10

CQL

CQL+MDP

1.0

1e6

CQL+IID

0.8

Score

Normalized

Conclusion

- We propose a **simple yet effective** synthetic pre-training scheme for both DT and CQL
- A **smaller** state space/**simpler** token dependency challenges the previous view that language pre-training can provide unique benefits for offline RL
- Our results are **robust** over various hyper-parameters (state/action space **size**, **peakedness** of distributions, history **dependence**)
- Our approach is **extremely efficient** (DT+Synthetic uses 3% the resources needed for DT+Wiki, faster fine-tuning; CQL pre-training only takes 5 mins!)

Thank you!

• Reference

- Reid, M., Yamada, Y., & Gu, S. S. (2022). Can wikipedia help offline reinforcement learning?. arXiv preprint arXiv:2201.12122.
- Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. *Advances in neural information processing systems*, *33*, 1877-1901.
- Janner, M., Fu, J., Zhang, M., & Levine, S. (2019). When to trust your model: Model-based policy optimization. *Advances in neural information processing systems*, 32.
- He, T., Zhang, Y., Ren, K., Liu, M., Wang, C., Zhang, W., ... & Li, D. (2022). Reinforcement learning with automated auxiliary loss search. *Advances in Neural Information Processing Systems*, *35*, 1820-1834.
- Fu, J., Kumar, A., Nachum, O., Tucker, G., & Levine, S. (2020). D4rl: Datasets for deep data-driven reinforcement learning. *arXiv* preprint arXiv:2004.07219.
- Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., ... & Mordatch, I. (2021). Decision transformer: Reinforcement learning via sequence modeling. *Advances in neural information processing systems*, *34*, 15084-15097.
- Kumar, A., Zhou, A., Tucker, G., & Levine, S. (2020). Conservative q-learning for offline reinforcement learning. *Advances in Neural Information Processing Systems*, 33, 1179-1191.
- Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018, July). Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *International conference on machine learning* (pp. 1861-1870). PMLR.
- Merity, S., Xiong, C., Bradbury, J., & Socher, R. (2016). Pointer sentinel mixture models. *arXiv preprint arXiv:1609.07843*.

