

# **Overcoming the Pitfalls of Vision-Language Model Finetuning for OOD Generalization**

Yuhang Zang<sup>1</sup>, Hanlin Goh<sup>2</sup>, Josh Susskind<sup>2</sup>, Chen Huang<sup>2</sup>

<sup>1</sup>Nanyang Technological University, <sup>2</sup>Apple

ICLR 2024 | Apple | May 7, 2024

#### Background

(e.g., CLIP) on downstream tasks.



# We study OOD generalization when finetuning vision-language models

#### Background

- Two settings for OOD generalization:
  - Within-dataset
  - Cross-dataset

#### ImageNet (within-dataset)





#### Motivation

overfitting



• We propose **OGEN**: our approach to improve **OOD GEN**eralization

#### • Recent finetuning methods for vision-language models often lead to

#### Method

#### Main contribution: jointly trained class-conditional feature generator



#### Method

#### Implementation of the class-conditional feature generator



### **Qualitative Results**

### Visualization: unknown image feature synthesis via extrapolation





## Optimization

- Joint optimization of known and synthetic unknown class data
- reduce overfitting
  - Mean Teacher model with adaptive window size

 $\mathbf{MT}_{[1,t]}: \ \theta_i^T = \alpha \theta_{i-1}^T + (1 - 1)$ Mean Teacher Adaptive window  $ALMT_t$ :  $MT_{[t-m_t,t]}$ ,  $m_t =$ 

## Adaptive self-distillation on the unknown feature generator to further

$$\alpha)\theta_i, \quad for \quad i = \{1, \dots, t\},\\ \left\lfloor \left(1 + \cos\left(\frac{t_{\max} + t}{t_{\max}}\pi\right)\right) \cdot \frac{1}{2}(m_{\max} - m_{\min}) + m_r\right.\right\}$$



#### **Main Results**

Within-dataset generalization (base-to-new class)

|                           |                       | CoOp                    |                                  | CoCoOp                         |                                  | VPT                     |                                  | SHIP                    |                                  | KgCoOp                  |                                  | MaPLe                   |                                  | PromptS                 |                  |
|---------------------------|-----------------------|-------------------------|----------------------------------|--------------------------------|----------------------------------|-------------------------|----------------------------------|-------------------------|----------------------------------|-------------------------|----------------------------------|-------------------------|----------------------------------|-------------------------|------------------|
|                           | +OGEN                 | X                       |                                  | X                              | 1                                | X                       | 1                                | <b>X</b>                | ✓                                | X                       | 1                                | <b>X</b>                | ✓                                | X                       | -                |
| Avg across<br>11 datasets | Base<br>New<br>A<br>H | 82.69<br>63.22<br>71.66 | 83.47<br>69.54<br>+6.32<br>75.87 | <b>80.47</b><br>71.69<br>75.83 | 79.86<br>73.35<br>+1.66<br>76.47 | 82.51<br>69.01<br>75.16 | 82.52<br>70.61<br>+1.60<br>76.10 | 80.03<br>73.69<br>76.73 | 80.79<br>76.14<br>+2.45<br>78.40 | 80.73<br>73.60<br>77.00 | 81.34<br>75.68<br>+2.08<br>78.40 | 82.28<br>75.14<br>78.55 | 82.40<br>76.37<br>+1.23<br>79.27 | 84.26<br>76.10<br>79.97 | 8<br>7<br>+<br>8 |

Cross-dataset generalization

|                       | Source                | Target         |                |                |                |                |                |                |                |                |                |                       |
|-----------------------|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------------|
|                       | ImageNet              | Caltech101     | OxfordPets     | StanfordCars   | Flowers102     | Food101        | FGVCAir        | SUN397         | DTD            | EuroSAT        | UCF101         | Average               |
| CoOp                  | 71.51                 | 93.70          | 89.14          | 64.51          | 68.71          | 85.30          | 18.47          | 64.15          | 41.92          | 46.39          | 66.55          | 63.88                 |
| OGEN-CoOp             | 71.52                 | 94.60          | 90.73          | 65.07          | 70.55          | 87.26          | 19.84          | 65.77          | 44.90          | 49.53          | 69.36          | 65.76                 |
| CoCoOp<br>OGEN-CoCoOp | 71.02<br><b>71.28</b> | 94.43<br>95.12 | 90.14<br>91.37 | 65.32<br>66.04 | 71.88<br>72.90 | 86.06<br>86.54 | 22.94<br>22.95 | 67.36<br>68.42 | 45.73<br>46.38 | 45.37<br>45.82 | 68.21<br>69.74 | 65.74<br><b>66.53</b> |



### Conclusions

- Study and improve OOD generalization of CLIP finetuning
- Class-conditional feature generator helps regularize the unknowns
- Adaptive self-distillation scheme to further reduce overfitting
- Superior generalization capability under different OOD settings





TM and © 2024 Apple Inc. All rights reserved.

