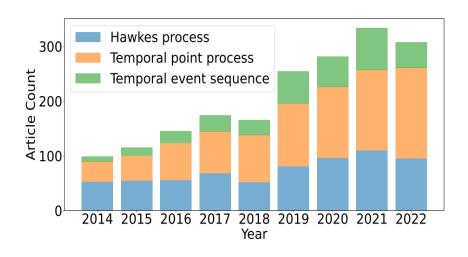


EasyTPP: Towards Open Benchmarking Temporal Point Process


Siqiao Xue¹, Xiaoming Shi¹, Zhixuan Chu¹, Yan Wang¹, Hongyan Hao¹, Fan Zhou¹, Caigao Jiang¹, Chen Pan¹, Qingsong Wen², James Y Zhang¹, Jun Zhou¹, Hongyuan Mei³

¹ Ant Group, ² Alibaba Group, ³ TTIC

Motivation

The number of research papers on TPPs has been steadily increasing. These advancements have enabled more accurate and flexible modeling of event sequences in diverse fields.

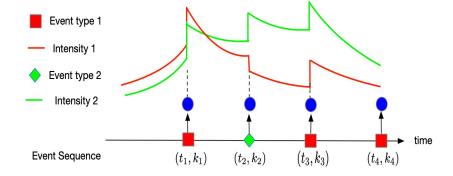
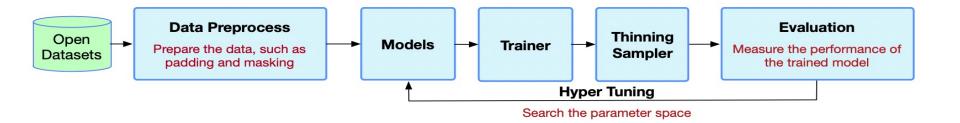


Figure 2: Drawing an event stream from a neural TPP. The model reads the sequence of past events (polygons) to arrive at a hidden state (blue). That state determines the future "intensities" of the two types of events—that is, their time-varying instantaneous probabilities. The intensity functions are continuous parametric curves (solid lines) determined by the most recent model state. Events will update the future intensity curves as they occur.

Our contribution: open benchmarking TPPs with a central library


https://github.com/ant-research/EasyTemporalPointProcess

```
python 3.9+ license Apache last commit march

pypi v0.0.7.1 Downloads 3k  ⊕ Hugging Face EasyTPP open issues 2
```

EasyTPP is an easy-to-use development and application toolkit for <u>Temporal Point Process</u> (TPP), with key features in configurability, compatibility and reproducibility. We hope this project could benefit both researchers and practitioners with the goal of easily customized development and open benchmarking in TPP.

Benchmarking process

A number of highly-cited datasets / models have been benchmarked.

Benchmarking Result and Future Insight

No consistent winner on next-event / long consistency prediction tasks.

Future research: build foundation event sequence model and utilize external source for event modeling.

MODEL	METRICS (TIME RMSE / TYPE ERROR RATE)				
	AMAZON	RETWEET	TAXI	Таовао	STACKOVERFLOW
МНР	0.635/75.9% 0.005/0.005	22.92/55.7% 0.212/0.004	0.382/9.53% 0.002/0.0004	0.539/68.1% 0.004/0.004	1.388/65.0% $0.011/0.005$
RMTPP	0.620/68.1% 0.005/0.006	22.31/44.1% 0.209/0.003	0.371/9.51% 0.003/0.0003	0.531/55.8% 0.005/0.004	1.376/57.3% 0.018/0.005
NHP	0.621/67.1% 0.005/0.006	$\frac{21.90}{0.184}/0.002$	$\frac{0.369}{0.003/0.0005}$	$0.531/54.2\% \ 0.005/0.006$	$\frac{1.372}{0.011} / \frac{55.0\%}{0.006}$
SAHP	0.619/67.7% 0.005/0.006	22.40/41.6% 0.301/0.002	0.372/9.75% 0.003/0.0008	$0.532/54.6\% \ 0.004/0.002$	1.375/56.1% $0.013/0.005$
THP	0.621/66.1% 0.003/0.007	22.01/41.5% 0.188/0.003	0.370/8.68% 0.003/0.0006	$\begin{array}{c} 0.531 / \underline{53.6\%} \\ 0.003 / 0.004 \end{array}$	1.374/55.0% $0.021/0.006$
ATTNHP	$\begin{array}{c} 0.621/\underline{65.3\%} \\ 0.005/0.006 \end{array}$	22.19/40.1% 0.180/0.003	0.371/8.71% 0.003/0.0004	$\frac{0.529}{53.7\%}$ 0.005/0.001	$\frac{1.372}{55.2\%}$ $\frac{0.019}{0.003}$
ODETPP	$0.620/65.8\% \ 0.006/0.008$	$22.48/43.2\% \ 0.175/0.004$	$0.371/10.54\% \ 0.003/0.0008$	$0.533/55.4\% \ 0.005/0.007$	$1.374/56.8\% \ 0.022/0.004$
FULLYNN	0.615/N.A. 0.005/N.A.	21.92/N.A. 0.159/N.A.	0.373/N.A. 0.003/N.A.	0.529/N.A. 0.005N.A.	1.375/N.A. 0.015/N.A.
IFTPP	0.618/67.5% 0.005/0.007	$\begin{array}{c} 22.18 / \underline{39.7\%} \\ 0.204 / 0.003 \end{array}$	0.377/8.56% 0.003/0.006	$0.531/55.4\% \ 0.005/0.004$	1.373/55.1% $0.010/0.005$

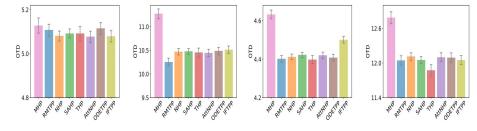


Figure 5: Long horizon prediction on Retweet data: Figure 6: Long horizon prediction on Taxi data: left left (avg prediction horizon 5 events) vs. right (avg (avg prediction horizon 5 events) vs. right (avg preprediction horizon 10 events).

diction horizon 10 events).

Please come to our **poster** for

More implementation details!

More experimental details!

Please download our paper at

