

RTFS-Net: Recurrent Time-Frequency Modelling For Efficient Audio-Visual Speech Separation

Understanding and overcoming the cocktail party problem.

Samuel Pegg | Kai Li | Xiaolin Hu axh.2020@tsinghua.org.cn | <u>lk21@mails.tsinghua.edu.cn</u> | <u>xlhu@tsinghua.edu.cn</u>

1. The Cocktail Party Problem

2. Motivations

3. RTFS-Net

4. Experimental Results

What is the Cocktail Party Problem?

"

The task of focusing on a single speaker's speech in a noisy environment with multiple people talking simultaneously.

"

What is AVSS?

"

A branch of signal processing that integrates both auditory and visual information to solve the cocktail party problem.

"

What is Audio Visual Target Speaker Extraction?

The specific task within AVSS aimed at isolating and enhancing the speech of a **chosen target speaker** from the other voices in the mixture, using the target speaker's visual cues, such as lip movements.

APPLICATIONS

Video Conferencing and Remote Work

Film and Video Post-Production

Clearer Lecture Recordings in Noisy Classrooms

Smart Home Devices

Assistive Devices

Evidence Analysis via Surveillance Tapes

Contemporary AVSS Methodologies

Time Domain (T-Domain)

Wu et al. (2019) Li et al. (2022) Martel et al. (2023) Lin et al. (2023)

Time-Frequency Domain (TF-Domain)

Afouras et al. (2018a) Alfouras et al. (2018b) Gao & Grauman (2021) TF-Domain methods add an additional dimension (frequency), offering an additional perspective of the data.

So why do T-domain methods historically perform better?

1. The Cocktail Party Problem

2. Motivations

3. RTFS-Net

4. Experimental Results

Contemporary TF-domain AVSS methods do not model time and frequency separately.

Figure 2: Our audio-visual speech separator network takes a mixed speech signal as input and analyses the lip motion and facial attributes in the face track to separate the portion of sound responsible for the corresponding speaker.

Figure 3: Our multi-task learning framework that jointly learns audio-visual speech separation and cross-modal face-voice embeddings. The network is trained by minimizing the combination of the mask prediction loss, the cross-modal matching loss, and the speaker consistency loss defined in Sec. 3.3.

Contemporary TF-domain audio-only speech separation methods are inefficient.

Fig. 2: Proposed TF-GridNet based DNN₂.

TF-GridNet (Zhong et al., IEEE / ACM Transactions on Audio, Speech, and Language Processing, 2023)

Contemporary AVSS methods do not take advantage of cross attention for fusing audio and visual information.

CTC-Net (Li et al., IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024)

TF-domain features are implicitly complex, current TF-domain methods do not explicitly capture this component of the data.

1. The Cocktail Party Problem

2. Motivations

3. RTFS-Net

4. Experimental Results

Methods: Target Speaker Extraction Pipeline

Key features:

- Pre-trained video encoder, Short-Time Fourier Transform (STFT) based audio encoder.
- Multimodal information fused using the CAF Block.
- R-Stacked **RTFS Blocks** distill the salient information.
- **S3 Block** extracts the target speaker's audio from the encoded audio mixture.
- Convolutional audio decoder utilizing the Inverse STFT.

Methods: Cross-Dimensional Attention Fusion Block Design

CAF Block

- Depth-wise, group convolution-based architecture.
- Designed to consume **as few resources as possible** while fusing the 2D visual data into the 3D audio data.
- Involves two fusion operations: the multi-headed cross-attention fusion f_1 and the gated fusion f_2 .
- The attention fusion combines the information of multiple receptive fields via a **multi-headed attention operation** to filter the mixture of audio features using element-wise multiplication.
- The gated fusion again filters the mixture of audio features using the visual features as an **information** gate.

Methods: RTFS-Net Block Design

- Features are **compressed** to a more efficient size using **concentric convolutions** with stride 2.
- The frequency and time dimensions are processed **individually** using SRUs (optimized LSTMs), then in tandem using a **transformer** to capture inter-dependencies.
- Original dimensions are then **restored** using our Temporal-Frequency Attention Reconstruction (TF-AR) units.

Methods: Spectral Source Separation (S^3)

- Encoder produces **complex** features using the STFT.
- Real and imaginary features are concatenated, then passed to the convolutional encoder.
- Direct mask multiplication with the encoded mixture results in **critical information loss**.
- The S^3 Block solves this via a direct application of complex number properties.

Target Speaker	LRS2-2	2Mix	RTFS-Net	RTFS-Net	Extraction	Extraction
Extraction Method	SI-SNRI	SDRi	Params (K)	MACs (G)	Params (K)	MACS (M)
Regression	10.0	9.9	208	3.0	0	0
Mask	10.8	11.2	224	3.6	16	534
Mask + DW-Gate	10.8	11.3	225	3.6	17	542
Mask + Gate	11.1	11.6	257	4.6	49	1595
S^3 (ours)	11.3	11.7	224	3.6	16	534

1. The Cocktail Party Problem

2. Motivations

3. RTFS-Net

4. Experimental Results

RESULTS

Model	LRS SI-SNRi	S2-2Mi SDRi	ix PESQ	LRS SI-SNRi	S3-2Mi SDRi	x PESQ	VoxCe SI-SNRi	eleb2-2 SDRi	Mix PESQ	Params (M)	MACs (G)	Time (ms)
CaffNet-C* 2021	-	12.5	1.15	-	12.3	-	-	-	-	-	-	-
Thanh-Dat 2021	-	11.6	-	-	-	-	-	-	-	-	-	-
AV-ConvTasnet 2019	12.5	12.8	-	11.2	11.7	-	9.2	9.8	-	16.5	-	60.3
VisualVoice 2021	11.5	11.8	2.78	9.9	10.3	-	9.3	10.2	-	77.8	-	130.2
AVLIT 2023	12.8	13.1	2.56	13.5	13.6	2.78	9.4	9.9	2.23	5.8	36.4	53.4
CTCNet 2022	14.3	14.6	3.08	17.4	17.5	3.24	11.9	13.1	3.00	7.0	167.2	122.7
RTFS-Net-4	14.1	14.3	3.02	15.5	15.6	3.08	11.5	12.4	2.94	0.7	21.9	57.8
RTFS-Net-6	14.6	14.8	3.03	16.9	17.1	3.12	11.8	12.8	2.97	0.7	30.5	64.7
RTFS-Net-12	14.9	15.1	3.07	17.5	17.6	3.25	12.4	13.6	3.00	0.7	56.4	109.9

- Comparison with existing methods on the LRS2-2Mix, LRS3-2Mix and VoxCeleb2-2Mix datasets.
- Larger SI-SNRi, SDRi and PESQ values indicate better performance.
- Lower parameter and MAC counts indicate smaller, more efficient models.
- RTFS-Net reduces computational complexity, and hence inference time significantly.

1. The Cocktail Party Problem

2. Motivations

3. RTFS-Net

4. Experimental Results

CONCLUSION

- RTFS-Net outperforms the prior SOTA method in both **inference speed** and **separation quality.**
- RTFS-Net **reduces** the number of parameters by **90%** and the number of MACs by **83%**.
- Efficiently fuse multimodal information using only 83 million MACs a **97% reduction** (CAF Block).
- Effectively decode the separated audio without losing critical **amplitude** and **phase** information (S^3 Block).
- Apply powerful **RNN** and **Transformer** operations at compressed subspace to negate computational burden (RTFS Block).

CODE

THANK

YOU

FOR YOUR ATTENTION