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Introduction
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* Dense Attacks (L, or L_ norm): changing an entire image (widely explored).

« Sparse Attacks (L, norm): changing a few pixels (less well studied).
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Motivation
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In real-world systems, the model is hidden from users except for the access to the model’s
response. Thus, it is a practical and threatening attack.
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BruSLeAttack against ImageNet
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Threat model:

 Have access to output
score (Score-based)

« Alter a few pixels (Sparse)
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BruSLeAttack against Deep Learning Models

Attack Transformers & Convolutional Nets

a) ResNet-50 b)  ResNet-50 (SIN) ©) ViT d)  Model Robustness
100 100 80 100 %:-._ ResNet-50 (SIN) =
75 75 _ 3“_’3,?5 “*~.._ ResNet-50

9 60 > . e ViT =

Eﬁﬂl 50 40 E 50 Tteea

< 25 — Oparse-RS 25 20 E 25 N ST

- OUr Attack - - 0.4%
0 0
0K 2K 4K _EH BK 10K Ok 2K 4K Gk aK 10K 0K 2K 4K &K aK 10K IDDI‘: 2K 4K _EH 8K 10K
Queries Queries Queries Queries

Query Efficiency: within 10K queries, BruSLeAttack outperforms State-of-the-art Sparse-RS [4].

Attack Success Rate (ASR, up to 10K queries): BruSLeAttack achieves a much higher ASR than
Sparse-RS across different query budgets.

THE UNIVERSITY
[4] Francesco Croce, Maksym Andriushchenko, Naman D. Singh, Nicolas Flammarion, and Matthias Hein. Sparse-RS: A Versatile Framework for Query-Efficient Sparse Black-Box Adversarial o ADELAIDE
Attacks. Association for the Advancement of Artificial Intelligence (AAAI), 2022.
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BruSLeAttack is more query efficient than State-of-the-art Sparse-RS.

Project URL: https://brusliattack.github.io/ JADELAIDE



https://brusliattack.github.io/

BruSLeAttack against Defended Models
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Soarsit Undefended Model | .-AT [o-AT RND

parsity SPARSE-RS BRUSLEATTACK | SPARSE-RS BRUSLEATTACK | SPARSE-RS BRUSLEATTACK | SPARSE-RS BRUSLEATTACK
0.04% 33.6% 24.0% 43.8% 42.2% 89.8% 88.4% 90.8% 85.0%
0.08% 13.2% 6.8% 26.8% 24.4% 81.2% 79.2% 82.2% 72.6%
0.12% 7.6% 2.6% 19.0% 18.4% 75.8% 73.8% 73.6% 61.0%
0.16% 5.2% 1.0% 16.6% 14.8% 71.4% 69.2% 64.8% 51.4%

0.2% 4.6% 1.0% 12.2% 11.8% 68.4% 66.4% 56.8% 42.6%

BruSLeAttack consistently outperforms Sparse-RS against different defense methods and
different sparsity levels.
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Challenges
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An NP-hard problem [1, 2].

A discrete and non-differentiable search space (mixed discrete and continuous) [3].

[1] Modas and P. Moosavi-Dezfooli, S. Frossard. Sparsefool: a few pixels make a big difference. CVPR 20109.

[2] X. Dong, D. Chen, J. Bao, C. Qin, L. Yuan, W. Zhang, N. Yu, and D. Chen. GreedyFool: DistortionAware Sparse Adversarial Attack, NeurlPS, 2020.
[3] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. IEEE SSP, 2017.
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Challenges

Problem formulation

x” = argmin L(f(Z), Yarger) S-t. | — Z||o < B,

€I

The search space Is width X height X channels x colors.

« The search space is extremely enormous

« [tis a significant barrier for attack progress

Achieving both query efficiency and a high attack success rate (ASR) for a high-resolution
dataset is challenging.
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How hard Is to discover sparse
adversarial example in black-box
settings?



Approach

An idea to reduce search space into width x height.

Source image

r = ux —|— 1—11,

Image Maker : e

u € {0, 1}wxnh

Synthetic color
Image Adversarial

example

New formulation: u* = argmin £(u) s.t ||ullp < B,

u

l(u) == L(f(ux' + (1 —u)x), Yiarget)
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Approach

Employ Bayesian Framework and history of pixel manipulation to learn the influence
of pixels.

Intuition: If a pixel has more impact on the model’s decision, replacing it is more likely to
result in an increase in the loss. Thus, it should be less likely to be replaced.
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Approach

BruS

1. Create a dissimilarity map M

”

Source
Image

_eAttack algorithm

Synthetic )
Color Irpage
£

Initialization (4igo. 2)

Dissimilarity
Map Creation
(Eg. 1)

Dissimilarity |
Map M

u'{ﬂr
Generation
u{t—l]l u[g]
(Algo. 3)
E o0 1 Loss +
) Computation
M (Eq. 3,5, 12) (Eq. 2)

! T (u®,61) ¢(um! ¢ty
E Update
— (Eq. 8) (Eq. 13)

.................................................

2. Initialize the some solutions randomly and choose the best (%

i Black-box
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Approach

BruSLeAttack algorithm
[ Source  Synthetic | — — Blu02 1 (1w
Image  Color Image Dissimilarity] uf 5
) ! H i
Map M D GE:E:E';'““ 0 il Black-box
: ' Loss ® model f
Dissimilarity l _.,ﬂm= M Computation |
Map Creation |» —» E:. (Eq. 3, 5, 12) (Eq. 2) |
(Eq. 11) ] ' Confidence
E T(umjﬂm) ¢(u(t}!£{t}} O eors
Initialization (aigo. 2) > (Eq. 8) (Eq. 13)

3. Sample new u®based on 8Mand M. Then craft an adversarial image ¥
from u®,x and x’.

4. Query model f and calculate loss ¢V
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Approach

BruSLeAttack algorithm
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Initialization (aigo. 2)

5. Update both 8® and u®

‘Algo. 4
» s iEq a: Ea. 131
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Conclusion

BruSLeAttack
* |s capable of handling a discrete and non-differentiable search space.

* |s able to remedy the NP-hard problem.

* |s much more query-efficient than Sparse-RS in different benchmarks.
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