Implicit bias of SGD in L_2 -regularized linear DNNs: One-way jumps from high to low rank

Zihan Wang, Arthur Jacot

Courant Institute of Mathematical Sciences New York University

 We study a matrix completion problem with true matrix A* using deep linear networks (DLNs): A_θ = W_L · · · W₁.

э

イロト イポト イヨト イヨト

- We study a matrix completion problem with true matrix A* using deep linear networks (DLNs): A_θ = W_L · · · W₁.
- The optimization objective is the matrix completion (MC) loss with L_2 regularization: $\frac{1}{2N} \sum_{(i,j) \in I} (A_{ij}^* A_{ij})^2 + \lambda \|\theta\|^2$, where I is the set of all observed entries of A^* and N = |I|.

- We study a matrix completion problem with true matrix A* using deep linear networks (DLNs): A_θ = W_L · · · W₁.
- The optimization objective is the matrix completion (MC) loss with L_2 regularization: $\frac{1}{2N} \sum_{(i,j) \in I} (A_{ij}^* A_{ij})^2 + \lambda ||\theta||^2$, where I is the set of all observed entries of A^* and N = |I|.
- We examine the implicit bias of SGD with finite learning rate:

$$\theta_{t+1} = (1 - 2\eta\lambda)\theta_t - \frac{\eta}{2}\nabla_\theta \left(A^*_{i_t j_t} - A_{\theta_t, i_t j_t}\right)^2.$$

• Approximately balanced: for all ℓ , $\|W_{\ell}^{\mathsf{T}}W_{\ell} - W_{\ell-1}W_{\ell-1}^{\mathsf{T}}\|_{F}^{2} \leq \epsilon_{1}$.

æ

イロト イヨト イヨト イヨト

- Approximately balanced: for all ℓ , $\|W_{\ell}^{\mathsf{T}}W_{\ell} W_{\ell-1}W_{\ell-1}^{\mathsf{T}}\|_{F}^{2} \leq \epsilon_{1}$.
- ② Approximately rank r: for all ℓ, ∑_{i=1}^{RankWℓ} f_α(s_i(W^T_ℓWℓ)) ≤ r + ε₂ where s_i(A) is the *i*-th singular value of A and f_α(x) is a concave and increasing function such that f_α(0) = 0 and f_α(x) = 1 for x > α with some mild assumptions.

- Approximately balanced: for all ℓ , $\|W_{\ell}^{\mathsf{T}}W_{\ell} W_{\ell-1}W_{\ell-1}^{\mathsf{T}}\|_{F}^{2} \leq \epsilon_{1}$.
- Opproximately rank r: for all ℓ, ∑_{i=1}^{RankWℓ} f_α(s_i(W^T_ℓWℓ)) ≤ r + ε₂ where s_i(A) is the *i*-th singular value of A and f_α(x) is a concave and increasing function such that f_α(0) = 0 and f_α(x) = 1 for x > α with some mild assumptions.
- Sounded: for all ℓ , $\|W_{\ell}\|_{F}^{2} \leq C$.

- Approximately balanced: for all ℓ , $\|W_{\ell}^{T}W_{\ell} W_{\ell-1}W_{\ell-1}^{T}\|_{F}^{2} \leq \epsilon_{1}$.
- Approximately rank r: for all ℓ, ∑_{i=1}^{RankW_ℓ} f_α(s_i(W_ℓ^TW_ℓ)) ≤ r + ε₂ where s_i(A) is the *i*-th singular value of A and f_α(x) is a concave and increasing function such that f_α(0) = 0 and f_α(x) = 1 for x > α with some mild assumptions.
- Bounded: for all ℓ , $||W_{\ell}||_F^2 \leq C$.
 - We denote the region in parameter space satisfying the conditions above by B_r .

イロト イヨト イヨト ・

Theorem (Informal)

For any initialization θ_0 and any $r \ge 0$, there exists T such that

 $\mathbb{P}(\theta_t \in B_r, \forall t > T | \theta_0) = 1.$

æ

イロト イヨト イヨト -

Theorem (Informal)

For any initialization θ_0 and any $r \ge 0$, there exists T such that

$$\mathbb{P}(\theta_t \in B_r, \forall t > T | \theta_0) = 1.$$

Lemma

For any critical point $\hat{\theta}$ in B_r , we have $\sum_{i=1}^{\operatorname{Rank}A_{\hat{\theta}}} f_{\alpha}(s_i(A_{\hat{\theta}})^{2/L}) \leq r + \epsilon_2$.

(日)

• For SGD, the set B_r is closed:

$$\theta_t \in B_r \Rightarrow \theta_{t+1} \in B_r.$$

æ

イロト イヨト イヨト イヨト

• For SGD, the set B_r is closed:

$$\theta_t \in B_r \Rightarrow \theta_{t+1} \in B_r.$$

2 For any parameter θ_t , there exists a time T such that

$$\mathbb{P}(\theta_{t+T} \in B_r | \theta_t) \geq O(r^T).$$

э

Experiments

• We observe 3 out of 4 entries of a 2 × 2 matrix: $\begin{pmatrix} 1 & * \\ \epsilon & 1 \end{pmatrix}$. The ground truth is the rank-1 matrix where the missing entry * is ϵ^{-1} .

イロト イヨト イヨト イヨト

• We observe 3 out of 4 entries of a 2×2 matrix: $\begin{pmatrix} 1 & * \\ \epsilon & 1 \end{pmatrix}$. The ground truth is the rank-1 matrix where the missing entry * is ϵ^{-1} .

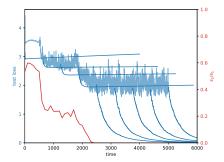


Figure: Red: ratio of second to first singular value of A_{θ} . Light blue: test error. Dark blue: test error after offshoots at different time with smaller η and λ .

• We have shown that SGD in DLNs has a non-zero probability of jumping from any higher rank region to a lower rank one, but the inverse is impossible.

.

- We have shown that SGD in DLNs has a non-zero probability of jumping from any higher rank region to a lower rank one, but the inverse is impossible.
- Our analysis does not rely on continuous approximation of SGD and the absorbing phenomenon cannot be recovered with a continuous approximation.

- We have shown that SGD in DLNs has a non-zero probability of jumping from any higher rank region to a lower rank one, but the inverse is impossible.
- Our analysis does not rely on continuous approximation of SGD and the absorbing phenomenon cannot be recovered with a continuous approximation.

Thank you!