Implicit bias of SGD in L_{2}-regularized linear DNNs: One-way jumps from high to low rank

Zihan Wang, Arthur Jacot

Courant Institute of Mathematical Sciences
New York University

NYU

Problem setting

- We study a matrix completion problem with true matrix A^{*} using deep linear networks (DLNs): $A_{\theta}=W_{L} \cdots W_{1}$.

Problem setting

- We study a matrix completion problem with true matrix A^{*} using deep linear networks (DLNs): $A_{\theta}=W_{L} \cdots W_{1}$.
- The optimization objective is the matrix completion (MC) loss with L_{2} regularization: $\frac{1}{2 N} \sum_{(i, j) \in I}\left(A_{i j}^{*}-A_{i j}\right)^{2}+\lambda\|\theta\|^{2}$, where I is the set of all observed entries of A^{*} and $N=|I|$.

Problem setting

- We study a matrix completion problem with true matrix A^{*} using deep linear networks (DLNs): $A_{\theta}=W_{L} \cdots W_{1}$.
- The optimization objective is the matrix completion (MC) loss with L_{2} regularization: $\frac{1}{2 N} \sum_{(i, j) \in I}\left(A_{i j}^{*}-A_{i j}\right)^{2}+\lambda\|\theta\|^{2}$, where l is the set of all observed entries of A^{*} and $N=|I|$.
- We examine the implicit bias of SGD with finite learning rate:

$$
\theta_{t+1}=(1-2 \eta \lambda) \theta_{t}-\frac{\eta}{2} \nabla_{\theta}\left(A_{i_{t} j_{t}}^{*}-A_{\theta_{t}, i_{t} j_{t}}\right)^{2} .
$$

Low rank region

(1) Approximately balanced: for all $\ell,\left\|W_{\ell}^{T} W_{\ell}-W_{\ell-1} W_{\ell-1}^{T}\right\|_{F}^{2} \leq \epsilon_{1}$.

Low rank region

(1) Approximately balanced: for all $\ell,\left\|W_{\ell}^{T} W_{\ell}-W_{\ell-1} W_{\ell-1}^{T}\right\|_{F}^{2} \leq \epsilon_{1}$.
(2) Approximately rank r : for all $\ell, \sum_{i=1}^{\operatorname{Rank} W_{\ell}} f_{\alpha}\left(s_{i}\left(W_{\ell}^{\top} W_{\ell}\right)\right) \leq r+\epsilon_{2}$ where $s_{i}(A)$ is the i-th singular value of A and $f_{\alpha}(x)$ is a concave and increasing function such that $f_{\alpha}(0)=0$ and $f_{\alpha}(x)=1$ for $x>\alpha$ with some mild assumptions.

Low rank region

(1) Approximately balanced: for all $\ell,\left\|W_{\ell}^{T} W_{\ell}-W_{\ell-1} W_{\ell-1}^{T}\right\|_{F}^{2} \leq \epsilon_{1}$.
(2) Approximately rank r : for all $\ell, \sum_{i=1}^{\operatorname{Rank} W_{\ell}} f_{\alpha}\left(s_{i}\left(W_{\ell}^{\top} W_{\ell}\right)\right) \leq r+\epsilon_{2}$ where $s_{i}(A)$ is the i-th singular value of A and $f_{\alpha}(x)$ is a concave and increasing function such that $f_{\alpha}(0)=0$ and $f_{\alpha}(x)=1$ for $x>\alpha$ with some mild assumptions.
(3) Bounded: for all $\ell,\left\|W_{\ell}\right\|_{F}^{2} \leq C$.

Low rank region

(1) Approximately balanced: for all $\ell,\left\|W_{\ell}^{T} W_{\ell}-W_{\ell-1} W_{\ell-1}^{T}\right\|_{F}^{2} \leq \epsilon_{1}$.
(2) Approximately rank r : for all $\ell, \sum_{i=1}^{\operatorname{Rank} W_{\ell}} f_{\alpha}\left(s_{i}\left(W_{\ell}^{\top} W_{\ell}\right)\right) \leq r+\epsilon_{2}$ where $s_{i}(A)$ is the i-th singular value of A and $f_{\alpha}(x)$ is a concave and increasing function such that $f_{\alpha}(0)=0$ and $f_{\alpha}(x)=1$ for $x>\alpha$ with some mild assumptions.
(3) Bounded: for all $\ell,\left\|W_{\ell}\right\|_{F}^{2} \leq C$.

- We denote the region in parameter space satisfying the conditions above by B_{r}.

Main results

Theorem (Informal)
For any initialization θ_{0} and any $r \geq 0$, there exists T such that

$$
\mathbb{P}\left(\theta_{t} \in B_{r}, \forall t>T \mid \theta_{0}\right)=1
$$

Main results

Theorem (Informal)

For any initialization θ_{0} and any $r \geq 0$, there exists T such that

$$
\mathbb{P}\left(\theta_{t} \in B_{r}, \forall t>T \mid \theta_{0}\right)=1
$$

Lemma

For any critical point $\hat{\theta}$ in B_{r}, we have $\sum_{i=1}^{\operatorname{Rank} A_{\hat{\theta}}} f_{\alpha}\left(s_{i}\left(A_{\hat{\theta}}\right)^{2 / L}\right) \leq r+\epsilon_{2}$.

Proof sketch

(1) For SGD, the set B_{r} is closed:

$$
\theta_{t} \in B_{r} \Rightarrow \theta_{t+1} \in B_{r}
$$

Proof sketch

(1) For SGD, the set B_{r} is closed:

$$
\theta_{t} \in B_{r} \Rightarrow \theta_{t+1} \in B_{r}
$$

(2) For any parameter θ_{t}, there exists a time T such that

$$
\mathbb{P}\left(\theta_{t+T} \in B_{r} \mid \theta_{t}\right) \geq O\left(r^{T}\right)
$$

Experiments

- We observe 3 out of 4 entries of a 2×2 matrix: $\left(\begin{array}{cc}1 & * \\ \epsilon & 1\end{array}\right)$. The ground truth is the rank-1 matrix where the missing entry * is ϵ^{-1}.

Experiments

- We observe 3 out of 4 entries of a 2×2 matrix: $\left(\begin{array}{cc}1 & * \\ \epsilon & 1\end{array}\right)$. The ground truth is the rank-1 matrix where the missing entry ${ }^{*}$ is ϵ^{-1}.

Figure: Red: ratio of second to first singular value of A_{θ}. Light blue: test error. Dark blue: test error after offshoots at different time with smaller η and λ.

Conclusion

- We have shown that SGD in DLNs has a non-zero probability of jumping from any higher rank region to a lower rank one, but the inverse is impossible.

Conclusion

- We have shown that SGD in DLNs has a non-zero probability of jumping from any higher rank region to a lower rank one, but the inverse is impossible.
- Our analysis does not rely on continuous approximation of SGD and the absorbing phenomenon cannot be recovered with a continuous approximation.

Conclusion

- We have shown that SGD in DLNs has a non-zero probability of jumping from any higher rank region to a lower rank one, but the inverse is impossible.
- Our analysis does not rely on continuous approximation of SGD and the absorbing phenomenon cannot be recovered with a continuous approximation.

Thank you!

