

Amortizing Intractable Inference in Large Language Models

Edward J. Hu*, Moksh Jain*, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio, Nikolay Malkin

International Conference on Learning Representations, 2024.

Language models store knowledge about the world

How to perform inference with this knowledge?

 $p_{\mathbf{I}}(w_1w_2...w_n) = p(w_1)p(w_2 | w_1)...p(w_n | w_1, ..., w_{n-1})$

 $\max \log p_{\theta}(w_{k+1} | w_1, ..., w_k)$

Language Model

RL Suffers from mode collapse

Intractable Inference in Language Models

- Tempered and contrastive sampling
- Constrained sampling

- Infilling and reverse sampling

 $q(Z|X) \propto p_{\mathrm{LM}}(Z|X)^{\frac{1}{T}}$

 $q(Z) \propto p_{\rm LM}(Z)c(Z)$

 $q(Z|X, Y) \propto p_{IM}(XZY)$

Reasoning Through Latent Variables Infilling is a latent variable inference problem

Reasoning and tool use are instantiations of this problem!

Amortized Inference with GFlowNets

Finetune the LLM as a GFlowNet policy to sample from p(Z|X, Y)

$$L(Z;\theta) = \sum_{0 \le i < j \le n} \left(\log \frac{R(z_{1:i} \top) \prod_{k=i+1}^{j} q_{\text{GFN}}(z_k \mid z_{1:k-1}) q_{\text{GFN}}(\top \mid z_{1:j})}{R(z_{1:j} \top) q_{\text{GFN}}(\top \mid z_{1:i})} \right)^2$$

Equivalent to path consistency objective in MaxEnt RL!

- Learned policy q_{GFN} can be used to sample Z for a new X
- **Posterior Predictive**: Sample many chains and take the most likely Y using $p_{LM}(Y|X,Z)$
- Variational EM: Can also update $p_{LM}(Y|X,Z)$

GFlowNet (as fine-tuned LM)

Sentence Continuation

Sampling from tempered distribution $q(Z|X) \propto p_{LM}(Z|X)^{\frac{1}{T}}$

GFlowNet fine-tuning balances likelihood and diversity!

Sentence diversity

Infiling Stories

He stopped going to burger places and started a vegetarian diet.

He decided to cut out the fast food.

BERTScore	GLEU-4	LLM Judge
0.081	3.2	2.4
0.094	3.7	2.7
0.184	4.2	3.4

	BERTScore	GLEU-4	LLM Judge
Prompting	0.081	3.2	2.4
SFT	0.094	3.7	2.7
GFlowNet-FT	0.184	4.2	3.4

Chain of thought reasoning **Subjectivity Classification**

Classify this movie review as objective or subjective: "another story follows the relationship between a stepfather (neeson) and his young stepson" This review is

Tra	aining Samples	
)	20	50
	51.7	
.3	61.8	65.8
.3	69.1	89.7
4	81.1	87.7
.2	78.7	89.9

Tool Use

Arithemetic with a calculator

Question: 3 + 5 - 6 = ?

Arithmetic with Tool Use

	Simple In-distribution	Hard In-distribution	OOD
CoT Prompting	35.5	21.0	10.5
SFT	72.1	19.6	12.8
PPO	30.6	13.7	5.6
GFlowNet FT	95.2	75.4	40.7
${\mathcal X}$		$z \sim q(z \mid x)$	logR
Question: 1 - 9 - 8 = ? Answer:		1 - 9 - 8	-13.17
		- 9 = -8 , -8 - 8 = -16	-27.75

Limitations

- Assumption: Base language model is a "good" world model
 - LMs can suffer from hallucination / miscalibration
- Slower than supervised fine-tuning
- Exploration is still a challenge
- Task specific models

a "good" world model miscalibration

What next?

- Transfer and generalization across tasks
- Quantifying epistemic uncertainty through chains-of-thought
- More structured latents (e.g. tree-of-thought)
- Learning from preference data capturing distribution over preferences!
- Amortized inference in diffusion models

Find us at Poster #93 Halle B!

