Estimating Conditional Mutual
Information for Dynamic Feature
Selection

Soham Gadgil*, lan Covert*, Su-In Lee

Paul G. Allen School of Computer Science & Engineering

University of Washington




Introduction

* Dynamic Feature Selection: paradigm where we sequentially query features
to make predictions with a minimal budget

=K
&
AA

-0:]

©




Introduction

* Dynamic Feature Selection: paradigm where we sequentially query features
to make predictions with a minimal budget

* Importantin settings like emergency medicine where not all features are
available, are costly to acquire, and best selections differ between predictions



Introduction

* Dynamic Feature Selection: paradigm where we sequentially query features
to make predictions with a minimal budget

* Importantin settings like emergency medicine where not all features are
available, are costly to acquire, and best selections differ between predictions

* We propose an information-theoretic approach which selects features based
on their conditional mutual information (CMI) with the target variable



Contribution

* We develop a learning approach (DIME) to estimate the CMl in a
discriminative fashion and prove that our objective recovers the exact CMI at
optimality

* Most works assume uniform feature costs; we adapt DIME to scenarios with
non-uniform feature costs

 We analyze the role of variable feature budgets between samples and how

they enable an improved cost-accuracy tradeoff through multiple stopping
criteria

 DIME provides consistent gains across all the datasets tested compared to
many recent methods



Proposed Method

 CMI, denoted as I(y; x;|x5), shows how much information an unknown feature x;
provides about the target y given the current set of selected features x

* Given avalue network that accurately predicts CMI, we can use it greedily select
the next feature

* Thisisidentical to performing greedy uncertainty minimization



Training Approach
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* Two networks: the value network v and predictor network f

« At each selection step n the value network v(xg; ¢) predicts the CMI I(y; x;|x)
for each candidate feature

* The feature x; which maximizes the CMI is used for the next prediction f (x¢;; 6)



Training Approach

* Predictor loss: cross entropy
mgn EyyEs [£(f (xs;6),y)]

 Value network loss: MSE
. 2
min By, EsE; | (vi(ts; 6) — A, x1,7))|

where A(xg, x;,v) = £(f(x5),y) — £(f (x5, x;), y)

* Models are trained jointly, with selections being made using the e-greedy approach



Datasets

 Tabular Datasets
 MNIST (flattened, d = 784)
« ROSMAP dataset for dementia onset prediction (d = 43)
* Intubation dataset for predicting the need of respiratory support (d = 35)

* Image Datasets
* Imagenette, an Imagenet subset with 10 classes
* Imagenet-100, an Imagenet subset with 100 classes
 MHIST, a histopathology dataset to predict benign or pre-cancerous
lesions



Results: Tabular Datasets
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 Used multilayer perceptrons (MLPs) with two hidden layers and ReLU non-linearity
* DIME achieves the best results among all methods for both medical diagnosis tasks

* Performs the best on MNIST, achieving over 90% accuracy with an average of ~ 10/784
features (1.27%)



Results: Image Datasets
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0.8

o
o

Top-1 Acc
e
N

2.5 5.0 7.5 10.0 12.5 0 10 20 30 0 20 40 60
Avg # Patches Avg # Patches Avg # Patches
—— DIME (Penalized) --»-- CAE ---- Argmax-Direct --e-- Hard Attn

* Used Vision Transformers (ViT-small-patch-16) with a shared backbone
* Images are 256x256 with each feature being a 16x16 patch

* DIME with the penalized stopping criteria outperforms the baselines for all feature budgets

* Achieves nearly 97% accuracy on Imagenette with only ~15/196 patches (7.7%).



Results: Non-Uniform Costs
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 For Intubation, relative costs are considered
* For ROSMAP, costs are expressed as the time required to obtain each feature

* DIME provides the best cost-accuracy tradeoff, reflecting the improved CMI estimation



Conclusion

* This work presents DIME, a new DFS approach enabled by estimating the CMl in a
discriminative fashion

 Our approach involves learning value and predictor networks, trained in an end-
to-end fashion with a straightforward regression objective

* We prove that our training approach recovers the exact CMI at optimality

 Empirically, DIME accurately estimates the CMI and enables an improved cost-
accuracy tradeoff

* DIME beats prior methods, is robust to higher image resolutions, scales to more
classes, and benefits from modern architectures



