

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

TESTAM: Time-Enhanced Spatio-Temporal Attention Network with Mixture of Experts

Hyunwook Lee and Sungahn Ko Ulsan National Institute of Science and Technology

Background: Traffic Forecasting

Main research themes on spatial modeling methods

 $G = softmax(relu(E^TE))$

MegaCRN (Jiang et al., 2023)

Dynamic Graph Modeling

 $\mathcal{G} = \operatorname{softmax}(\operatorname{relu}(H^{\top}H)),$

* Figure reproduced from Vaswani et al. 2017

Most of the research focused on finding *all-in-one* best solution – Q: does it really exist in the traffic forecasting?

Static Graph Modeling

Dynamic Graph Modeling

- Rely on input-conditioned dynamic graph
- Relatively more robust for domain shift
- Vulnerable to input noises or outliers

- · No restriction on spatial dependency
- Take whole roads in account
- May need auxiliary connectivity information
- Often generate non-informative, blurry attention (Jin et al., 2023)

There are no *all-in-one* solution – Each method has its own pros and cons!

- Rely on static graph
- Robustness on outliers or noises
- Vulnerable to domain shifts
- Hard to achieve in-situ dependency modeling

There are no *all-in-one* solution – Each method has its own pros and cons!

... How about making the model specialized to "choose" the best one based on current situation?

Input-queried memory unit representation

$$Q_{i}^{(t)} = X_{i}^{(t)}W_{q} + b_{q}$$

$$\begin{cases} a_{j} = \frac{\exp(Q_{i}^{(t)}M[j]^{\top})}{\sum_{j=1}^{m}\exp(Q_{i}^{(t)}M[j]^{\top})} \\ O_{i}^{(t)} = \sum_{j=1}^{m}a_{j}M[j] \end{cases}$$

Routing probability

$$r_e = g(z_e, O_i^{(t)}); \quad p_e = \frac{r_e}{\sum_{e \in [e_1, \dots, e_E]} r_e},$$

Time-Enhanced Attention

$$\alpha_{i,j} = \frac{\exp(e_{i,j})}{\sum_{k=t+1}^{T} \exp(e_{i,k})},$$
$$e_{i,j} = \frac{(H^{(i)}W_q^{(k)})(\text{TIM}(\tau^{(j)})W_k^{(k)})^{\top}}{\sqrt{d_k}},$$

Temporal Information Embedding

$$TIM(\tau)[i] = \begin{cases} w_i v(\tau)[i] + \phi_i, & \text{if } i = 0\\ \mathcal{F}(w_i v(\tau)[i] + \phi_i) & \text{if } 1 \le i \le h - 1, \end{cases}$$

$$\boldsymbol{X}_{out}^{(t)} = \boldsymbol{Y}^{(t)} = [\boldsymbol{X}^{(t+1)}, \dots, \boldsymbol{X}^{(t+T)}] \quad \longrightarrow \quad \boldsymbol{\tau}_{label}^{(t)}$$

Showcase: highway entrance near Tokyo station

Showcase: complex intersection near Yoyogi park

Long-term prediction for road 1111 on 2021-12-9

Ablation Study Results

- Removing components makes degradation in performance
- Mixture-of-Experts, diversity of spatial modeling methods, and time-enhanced attention take an important role in the model

Table 2: Ablation study results across all prediction windows (i.e., average performance)

Ablation	METR-LA			PEMS-BAY			EXPY-TKY		
	MAE	RMSE	MAPE	MAE	RMSE	MAPE	MAE	RMSE	MAPE
w/o gating	3.00	6.12	8.29%	1.58	3.57	3.53%	6.74	10.97	29.48%
Ensemble	2.98	6.08	8.12%	1.56	3.53	3.50%	6.66	10.68	29.43%
worst-route avoidance only	2.96	6.06	8.11%	1.55	3.52	3.48%	6.45	10.50	28.70%
Replaced	2.97	6.04	8.05%	1.56	3.54	3.47%	6.56	10.62	29.20%
w/o TIM	2.96	5.98	8.07%	1.54	3.45	3.46%	6.44	10.40	28.94%
w/o time-enhanced attention	2.99	6.03	8.15%	1.58	3.59	3.52%	6.64	10.75	29.85%
TESTAM	2.93	5.95	7.99%	1.53	3.47	3.41%	6.40	10.40	28.67%

Summary

- Diversifying spatial modeling methods is beneficial
- Temporal information could be an indicator to guide attention domain
- Gating mechanism and spatial modeling have rooms for improvements

Hyunwook Lee

Sungahn Ko UNIST

Our in-person poster session is on Wednesday 4:30 pm!